Advances in physics and applications of 3D magnetic perturbations on the J-TEXT tokamak

2021 ◽  
Author(s):  
Nengchao Wang ◽  
Yunfeng Liang ◽  
Yong Hua Ding ◽  
Zhong yong Chen ◽  
Zhipeng Chen ◽  
...  

Abstract In the recent two years, three major achievements have been made on J-TEXT in supporting for the expanded operation regions and diagnostic capabilities, e.g. the 105 GHz/500 kW/1 s ECRH system and the poloidal divertor configuration. Especially, the 400 kW ECW has also been successfully injected into the diverted plasma. The locked mode (LM), especially the 2/1 LM, is one of the biggest threats to the plasma operation. Both the thresholds of 2/1 and 3/1 LM are observed to vary non-monotonically on electron density. The electrode biasing (EB) was applied successfully to unlock the LM from either a rotating or static RMP field. In the presence of 2/1 LM, three kinds of standing wave (SW) structures have been observed to share a similar connection to the island structure, i.e. the nodes of the SWs locate around the O- or X- points of the 2/1 island. The control and mitigation of disruption is essential to the safe operation of ITER, and it has been systematically studied by applying RMP field, MGI and SPI on J-TEXT. When the RMP induced 2/1 LM is larger than a critical width, the MGI shutdown process can be significantly influenced. If the phase difference between the O-point of LM and the MGI valve is +90° (or -90°), the penetration depth and the assimilation of impurities can be enhanced (or suppressed) during the pre-TQ phase and result in a faster (or slower) thermal quench. A secondary MGI can also suppress the RE generation, if the additional high-Z impurity gas arrives at the plasma edge before TQ. When the secondary MGI has been applied after the formation of RE current plateau, the RE current can be dissipated, and the dissipation rate increases with the injected impurity quantity, and saturates with a maximum of 28 MA/s.

Author(s):  
Ingo Ortlepp ◽  
Jens-Peter Zöllner ◽  
Ivo W. Rangelow ◽  
Eberhard Manske

AbstractThis paper describes a standing-wave interferometer with two laser sources of different wavelengths, diametrically opposed and emitting towards each other. The resulting standing wave has an intensity profile which is moving with a constant velocity, and is directly detected inside the laser beam by two thin and transparent photo sensors. The first sensor is at a fixed position, serving as a phase reference for the second one which is moved along the optical axis, resulting in a frequency shift, proportional to the velocity. The phase difference between both sensors is evaluated for the purpose of interferometric length measurements.


2021 ◽  
Author(s):  
J. Kim ◽  
W. Gillman ◽  
T. John ◽  
S. Adhikari ◽  
D. Wu ◽  
...  

Abstract This paper analyzes the dynamics of unstable azimuthal thermoacoustic modes in a lean premixed combustor. Azimuthal modes can be decomposed into two counter rotating waves where they can either compete and potentially suppress one of them (spinning) or coexist (standing), depending on the operating conditions. This paper describes experimental results of the dynamical behaviors of these two waves. The experimental data were taken at different mass flow rates as well as different azimuthal fuel staging in a multi-nozzle can combustor. It is shown that at a low flow rate with uniform fuel distribution, the two waves have similar amplitudes, giving rise to a standing wave. However, the two amplitudes are slowly oscillating out of phase to each other, and the phase difference between the two waves also shows oscillatory behavior. For an intermediate flow rate, the dynamics show intermittency between standing and spinning waves, indicating that the system is bistable. In addition, the phase difference dramatically shifts when the mode switches between standing and spinning waves. For a high flow rate, the system stabilizes at a spinning wave most of the time. These experimental observations demonstrate that not only the amplitudes of two waves but also the phase difference plays an important role in the dynamics of azimuthal mode. For non-uniform azimuthal fuel staging, the modal dynamics exhibit only an oscillatory standing wave behavior regardless of the mass flow rate. Compared to the uniform fuel staging, however, the pressure magnitude is considerably reduced, which provides a potential strategy to mitigate and/or suppress the instabilities.


2012 ◽  
Vol 52 (8) ◽  
pp. 083002 ◽  
Author(s):  
H. Stoschus ◽  
O. Schmitz ◽  
H. Frerichs ◽  
D. Reiser ◽  
M.W. Jakubowski ◽  
...  

2015 ◽  
Vol 17 (9) ◽  
pp. 797-801 ◽  
Author(s):  
Baogang Ding ◽  
Tongyu Wu ◽  
Shiping Li ◽  
Yan Zhou ◽  
Zejie Yin

1997 ◽  
Vol 4 (2) ◽  
pp. 329-336 ◽  
Author(s):  
R. M. Castro ◽  
M. V. A. P. Heller ◽  
I. L. Caldas ◽  
Z. A. Brası́lio ◽  
R. P. da Silva ◽  
...  

2016 ◽  
Vol 2 (3) ◽  
pp. 3-16 ◽  
Author(s):  
Александр Потехин ◽  
Aleksandr Potekhin ◽  
Артём Сетов ◽  
Artem Setov ◽  
Валентин Лебедев ◽  
...  

In the next few years, a new radar is planned to be built near Irkutsk. It should have capabilities of incoherent scatter (IS) radars and mesosphere-stratosphere-troposphere (MST) radars [Zherebtsov et al., 2011]. The IS-MST radar is a phased array of two separated antenna panels with a multichannel digital receiving system, which allows detailed space-time processing of backscattered signal. This paper describes characteristics, configuration, and capabilities of the antenna and transceiver systems of this radar. We estimate its potential in basic operating modes to study the ionosphere by the IS method at heights above 100 km and the atmosphere with the use of signals scattered from refractive index fluctuations, caused by turbulent mixing at heights below 100 km. The modeling shows that the radar will allow us to regularly measure neutral atmosphere parameters at heights up to 26 km as well as to observe mesosphere summer echoes at heights near 85 km in the presence of charged ice particles (an increase in Schmidt number) and mesosphere winter echoes at heights near 65 km with increasing background electron density. Evaluation of radar resources at the IS mode in two height ranges 100–600 and 600–2000 km demonstrates that in the daytime and with the accumulation time of 10 min, the upper boundaries of electron density and ionospheric plasma temperature are ~1500 and ~1300 km respectively, with the standard deviation of no more than 10 %. The upper boundary of plasma drift velocity is ~1100 km with the standard deviation of 45 m/s. The estimation of interferometric capabilities of the MST radar shows that it has a high sensitivity to objects of angular size near 7.5 arc min, and its potential accuracy in determining target angles can reach 40 arc sec.


2019 ◽  
Vol 37 (2) ◽  
pp. 197-202
Author(s):  
Shiyi Zhou ◽  
Zhijun Zhang ◽  
Chuliang Zhou ◽  
Zhongpeng Li ◽  
Ye Tian ◽  
...  

AbstractA high energy electron density modulator from a high-intensity laser standing wave field is studied herein by investigating the ultrafast motion of electrons in the field. Electrons converge at the electric field antinodes, and the discrete electron density peaks modulated by the field located at the corresponding laser phases of kx = nπ, (n = 0, 1, 2, …), that is, the modulation period is 1/2 the wavelength of the individual laser. We also discussed the influence of the laser parameters such as laser intensity and waist size on the beam modulator. It is shown that a long interaction length (waist) or sufficiently high field intensity is essential for relativistic electron density modulation.


Sign in / Sign up

Export Citation Format

Share Document