scholarly journals Analysis of Air Pollution due to Vehicle Exhaust Emissions on The Road Networks of Beringin Janggut Area

2019 ◽  
Vol 1198 (8) ◽  
pp. 082030 ◽  
Author(s):  
Achmad Rizki Pratama ◽  
Joni Arliansyah ◽  
Melawaty Agustien
Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2306 ◽  
Author(s):  
Timothy Bodisco ◽  
Ali Zare

One of the most important sources of air pollution, especially in urban areas, is the exhaust emissions from passenger cars. New European emissions regulations, to minimize the gap between manufacturer-reported emissions and those emitted on the road, require new vehicles to undergo emission testing on public roads during the certification process. Outlined in the new regulation are specific boundary conditions to which the route on which the vehicle is driven must comply during a legal test. These boundary conditions, as they relate to the design and subsequent driving of a compliant route, are discussed in detail. The practicality of designing a compliant route is discussed in the context of developing a route on the Gold Coast in Queensland, Australia, in a prescriptive manner. The route itself was driven 5 times and the results compared against regulation boundary conditions.


2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Tolesa Hundesa Muleta ◽  
Legesse Lemecha Obsu

In this paper, the analyses of traffic evolution on the road network of a roundabout having three entrances and three exiting legs are conducted from macroscopic point of view. The road networks of roundabouts are modeled as a merging and diverging types 1×2 and 2×1 junctions. To study traffic evolution at junction, two cases have been considered, namely, demand and supply limited cases. In each case, detailed mathematical analysis and numerical tests have been presented. The analysis in the case of demand limited showed that rarefaction wave fills the portion of the road network in time. In the contrary, in supply limited case, traffic congestion occurs at merging junctions and shock wave propagating back results in reducing the performance of a roundabout to control traffic dynamics. Also, we illustrate density and flux profiles versus space discretization at different time steps via numerical simulation with the help of Godunov scheme.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Jieyu Fan ◽  
Kun Gao ◽  
Yingying Xing ◽  
Jian Lu

One-way traffic management is a recognized traffic organization to improve traffic efficiency and safety, but its effects on different traffic emissions remains unclear. This paper aims to investigate the impacts of one-way traffic management on three typical vehicle exhaust emissions including Carbonic Oxide (CO), Hydrocarbon Compounds (HC), and Nitrogen Oxides (NOx) in a traffic system using an integrated approach. Field experiment was conducted to collect the vehicular emission data under different traffic conditions using the onboard portable emission measurement system. An instantaneous emission model (i.e., Vehicle Specific Power) is calibrated using the collected field emission data and is incorporated into the microscopic traffic simulation tool VISSIM for quantifying the emissions before and after one-way traffic management through simulation. Two scenarios based on real networks and traffic demands of peak hours in part areas of Shanghai are developed for simulation and evaluation. The results show that in the intersections, the emission rates of COHC, NOx after one-way traffic management is significantly reduced by 20.46%, 21.29% and 21.06%, respectively. In the road sections, the emission rates of CO, HC, NOx in the road sections decrease by 23.38% and 26.29%. The overall CO, HC, NOx emissions in the studied network reduce by 21.34%, 22.29% and 23.77% separately due to one-way traffic management. The results provide insights into the derivative effects of one-way traffic management on traffic emissions in the intersections, road sections and network levels, and thus support scientific traffic management for promoting the sustainability of transport system.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Md. Shohel Reza Amin ◽  
Umma Tamima ◽  
Luis Amador Jimenez

This study demonstrates through a case study that detailed analyses, even after the construction of a project, are feasible using current technologies and available data. A case study of highway 25 is used to illustrate the method and verify the levels of air contaminants from additionally induced traffic during and after the construction of highway. Natural traffic growth was removed from the effect of observed gas emissions by comparing observed levels on other further locations in the same metropolitan area. This study estimates air pollution from the additional traffic during and after the construction of A-25 extension project. NO2 levels were spatially interpolated during peak and off-peak hour traffic and traffic density simulated on the road network for four scenarios. Comparing the four scenarios, it was found that levels of NO2 concentrations were reduced at neighbor areas due to less traffic during the construction period. Levels of NO2 after the construction were higher than those in 2008. The simulated traffic density for four scenarios revealed that traffic density was significantly increased on both arterial and access roads within the close vicinity of the extension project during and after its construction.


Electric three-wheelers are now a day's becoming an emerging trend in the ecumenical market. Sundry manufacturers are coming into the market with different variants of electric three-wheelers. This paper aims to study these electrically powered three-wheelers comparing with conventional three-wheelers. As three-wheelers are the major source of road convey in developing countries and withal the more frugal one it is very consequential to study those. The conventional petrol engines, three-wheelers are engendering a plethora of pollution due to which electric three-wheelers are becoming a major source of magnetization in cities. Electric three-wheelers are comparatively very eco-cordial as they do not utilize any kind of fossil fuels. This paper aims to find a better alternative for sundry types of conventional three-wheeler running on the road. The exiting conveyances are to be superseded by the conveyance which can be operated utilizing a renewable source of energy, to minimize the unpropitious effects of conventional ones such as air pollution, low efficiency, high running cost, etc.


2009 ◽  
Vol 9 (21) ◽  
pp. 8247-8263 ◽  
Author(s):  
M. Wang ◽  
T. Zhu ◽  
J. Zheng ◽  
R. Y. Zhang ◽  
S. Q. Zhang ◽  
...  

Abstract. China implemented systematic air pollution control measures during the 2008 Beijing Summer Olympics and Paralympics to improve air quality. This study used a versatile mobile laboratory to conduct in situ monitoring of on-road air pollutants along Beijing's Fourth Ring Road on 31 selected days before, during, and after the Olympics air pollution control period. A suite of instruments with response times of less than 30 s was used to measure temporal and spatial variations in traffic-related air pollutants, including NOx, CO, PM1.0 surface area (S(PM1)), black carbon (BC), and benzene, toluene, the sum of ethylbenzene, and m-, p-, and o-xylene (BTEX). During the Olympics (8–23 August, 2008), on-road air pollutant concentrations decreased significantly, by up to 54% for CO, 41% for NOx, 70% for SO2, 66% for BTEX, 12% for BC, and 18% for SPM1, compared with the pre-control period (before 20 July). Concentrations increased again after the control period ended (after 20 September), with average increases of 33% for CO, 42% for NOx, 60% for SO2, 40% for BTEX, 26% for BC, and 37% for S(PM1), relative to the control period. Variations in pollutants concentrations were correlated with changes in traffic speed and the number and types of vehicles on the road. Throughout the measurement periods, the concentrations of NOx, CO, and BTEX varied markedly with the numbers of light- and medium-duty vehicles (LDVs and MDVs, respectively) on the road. Only after 8 August was a noticeable relationship found between BC and S(PM1) and the number of heavy-duty vehicles (HDVs). Additionally, BC and S(PM1) showed a strong correlation with SO2 before the Olympics, indicating possible industrial sources from local emissions as well as regional transport activities in the Beijing area. Such factors were identified in measurements conducted on 6 August in an area southwest of Beijing. The ratio of benzene to toluene, a good indicator of traffic emissions, shifted suddenly from about 0.26 before the Olympics to approximately 0.48 after the Olympics began. This finding suggests that regulations on traffic volume and restrictions on the use of painting solvents were effective after the Olympics began. This study demonstrated the effectiveness of air pollution control measures and identified local and regional pollution sources within and surrounding the city of Beijing. The findings will be invaluable for emission inventory evaluations and model verifications.


2001 ◽  
Author(s):  
Andrew Crookell ◽  
Markku Kansakoski ◽  
Richard A. Brook

2012 ◽  
Vol 610-613 ◽  
pp. 624-629
Author(s):  
Xiao Chun Qin ◽  
Bo Chang Dong ◽  
Yi Shen ◽  
She Gang Shao

60%~70% of air pollutants are vehicle emissions. With the soaring increasing of Vehicle Population, automobile exhaust is becoming the leading cause of air pollution. In this paper space-time variation rule of road-related atmospheric pollution is analyzed based on the characteristics of air pollution on the road. And the basic methods of road-related air pollution health risk assessment are determined in the analysis of the relationship of road-related air pollution and health. The economic evaluation of road-related air pollution is also made which would provide the methods for reference in the related research on road air pollution.


Author(s):  
Je-Liang Liou ◽  
Pei-Ing Wu

This is the first study to provide a systematic monetary benefit matrix, including greenhouse gas (GHG) emissions reduction benefits and air pollution reduction health co-benefits, for a change in on-the-road transport to low-carbon types. The benefit transfer method is employed to estimate the social cost of carbon and the health co-benefits via impact pathway analysis in Taiwan. Specifically, the total emissions reduction benefits from changing all internal combustion vehicles to either hybrid electric vehicles, plug-in hybrid electric vehicles, or electric vehicles would generate an average of US$760 million from GHG emissions reduction and US$2,091 million from health co-benefits based on air pollution reduction, for a total benefit of US$2,851 million annually. For a change from combustion scooters to light- or heavy-duty electric scooters, the average GHG emissions reduction benefits would be US$96.02 million, and the health co-benefits from air pollution reduction would be US$1,008.83 million, for total benefits of US$1,104.85 million annually.


Sign in / Sign up

Export Citation Format

Share Document