scholarly journals Data-driven occupant-centric rules of automated shade adjustments: Luxembourg case study

2021 ◽  
Vol 2042 (1) ◽  
pp. 012126
Author(s):  
Ghadeer Derbas ◽  
Karsten Voss

Abstract This study presents key findings of observed datasets in a nearly zero-energy office building for over 66 working days from June to mid-September in 2019, Luxembourg. Measurements of indoor and outdoor environmental parameters as well as user-shade override adjustments were extracted from the KNX-based building management system (BMS) in 47 office rooms located in three typical floor levels. Relative frequency and “rate of change” of blind use were analysed in terms of window orientation, occupancy level, and the time of the day. Logistic regression and data mining techniques were used to identify potentially useful and understandable occupant behaviour patterns and reveal the main triggers behind blind adjustments. The well-designed automation system together with the inner glare protection formed the base of very low user-shade interactions. A mean of 0.184 manual blind adjustments per day per office. Eight regression sub-models were developed and all were incapable of predicting user-shade lowering and raising events. Alternatively, two user profiles were mined based on 20 rules gained from clustering analysis: user (ß) was representing the passive user, and user (μ) the medium user. Overall, we conclude that the automated shading system in this building is satisfactory, user-friendly, and a robust control system.

2010 ◽  
pp. 164-169
Author(s):  
Hang Yin

Many publications have concluded that around 40% of the world’s energy costs are incurred in buildings. The biggest energy users in a building are facilities which cover 40% to 60% of the total energy cost. In recent years, construction work undertaken in building renovation and rehabilitation has increased considerably. Technical renovations have always brought better building management. Modern technology has a more user friendly interface as well as giving us the successful management of building systems and associated reduced costs. In order to implement more energy efficiency in existing buildings, Building Management System (BMS) and Building Information Modelling (BIM) play important roles in the energy & cost savings of the building’s life. This paper emphasises the use of Information and Communication Technology (ICT) to support and justify essential building renovation that will improve a building’s performance and decrease annual energy costs. We will present an introduction to BMS and BIM ...


2021 ◽  
Vol 3 (2) ◽  
pp. 7-13
Author(s):  
Jaya Prathab T. Arumugam ◽  
Kamran Shavarebi

The Relative Humidity in a Catheter Laboratory is desirous to be controlled within a range of 30 to 65% RH. A maximum Relative Humidity (RH) fluctuation of up to 70% is tolerated. A case study is presented whereby a high RH of up to 80% RH has been recorded in the examination room of a Catheter Laboratory (CathLab) in a local Hospital. The conditioned air to the CathLab is supplied through an existing dedicated Chilled Water Air Handling Unit. Two (2) solutions were considered and the technical and commercial comparisons carried out. The first option is an inline dehumidifier system and the second option is to install a portable standalone dehumidifier inside the CathLab examination room. Solutions to address the high Relative Humidity have to be carefully considered as the introduction of in-line dehumidifiers contribute to higher energy consumption. The latter was selected based on commercial reasons. Three (3) weeks of RH monitoring via the building’s Integrated Building Management System (IBMS) was carried out. The readings measured show a drastic reduction in RH to a mean of about 60% RH which meets the end user’s requirement. The cost for the second option was also found to be much lower at about 10% of the first option.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5154
Author(s):  
Iwona Grobelna

The paper proposes a novel formal verification method for a state-based control module of a cyber-physical system. The initial specification in the form of user-friendly UML state machine diagrams is written as an abstract rule-based logical model. The logical model is then used both for formal verification using the model checking technique and for prototype implementation in FPGA devices. The model is automatically transformed into a verifiable model in nuXmv format and into synthesizable code in VHDL language, which ensures that the resulting models are consistent with each other. It also allows the early detection of any errors related to the specification. A case study of a manufacturing automation system is presented to illustrate the approach.


A Building Management System is also known as Building Automation System (BAS), It is a Computer based control system installed in buildings that controls and monitors buildings mechanical and electrical equipment such as ventilation, lighting, power systems and security systems. A building management system for METRO includes inputs from the systems like HVAC (Heating Ventilation Air Conditioning), Lifts Escalators, UPS and Fire Alarm and Detection System etc. A Building Management system uses a PLC controller along with SCADA suite to monitor and control all the systems included in the Metro. BMS provides Automatic Fault Detection System and diagnosis strategies for building energy performance


2011 ◽  
Vol 6 (3) ◽  
pp. 63-72 ◽  
Author(s):  
Jarmila Rimbalová ◽  
Silvia Vilčeková ◽  
Adriana Eštoková

2016 ◽  
Vol 167 (5) ◽  
pp. 294-301
Author(s):  
Leo Bont

Optimal layout of a forest road network The road network is the backbone of forest management. When creating or redesigning a forest road network, one important question is how to shape the layout, this means to fix the spatial arrangement and the dimensioning standard of the roads. We consider two kinds of layout problems. First, new forest road network in an area without any such development yet, and second, redesign of existing road network for actual requirements. For each problem situation, we will present a method that allows to detect automatically the optimal road and harvesting layout. The method aims to identify a road network that concurrently minimizes the harvesting cost, the road network cost (construction and maintenance) and the hauling cost over the entire life cycle. Ecological issues can be considered as well. The method will be presented and discussed with the help of two case studies. The main benefit of the application of optimization tools consists in an objective-based planning, which allows to check and compare different scenarios and objectives within a short time. The responses coming from the case study regions were highly positive: practitioners suggest to make those methods a standard practice and to further develop the prototype to a user-friendly expert software.


Sign in / Sign up

Export Citation Format

Share Document