scholarly journals Direct stochastic molecular modelling of transport processes in gases

2021 ◽  
Vol 2056 (1) ◽  
pp. 012003
Author(s):  
V Ya Rudyak ◽  
E V Lezhnev

Abstract The stochastic molecular modeling method (SMM) of transport processes in rarefied gases developed by the authors is systematically discussed in this paper. It is shown that, it is possible to simulate the transport coefficients of rarefied gas with high accuracy, using a relatively small number of molecules. The data of modeling the thermal conductivity coefficient are presented for the first time. The second part of the paper is devoted to the generalization of the SMM method for modeling transport processes in confined conditions. To describe the dynamics of molecules in this case, the splitting of their evolution by processes is used: first, the movement of molecules in the configuration space is simulated, and then their dynamics in the velocity space is imitated. Anisotropy of viscosity and thermal conductivity in nanochannels has been established. The interaction of gas molecules with walls is described by specular or specular-diffuse reflection laws. Gas viscosity can be either greater than in the bulk or less, depending on the law of gas interaction with the channel walls.

One of the main successes of the kinetic theory of gases is the explicit calculation of the transport coefficients of rarefied gases. However, the greatest problems arise when calculating the thermal conductivity coefficient, especially for polyatomic gases. Also, when using different potentials, it is necessary to systematically calculate the so-called Ω-integrals, which in itself is a rather difficult task. For this reason, direct numerical molecular modeling of the processes of transfer of rarefied gases, in particular, the calculation of their transfer coefficients, is also relevant. A well-known method for such modeling is the molecular dynamics method. Unfortunately, until now this method is not available for modeling the processes of rarefied gas transfer. Under nor-mal conditions, the simulation cell should contain tens or even hundreds of millions of molecules during calculations. At the same time, the numerical implementation of the molecular dynamics method is accompanied by a systematic appearance of errors, which is the reason for the appearance of dynamic chaos. With this simulation, the true phase trajectories of the system under consideration cannot be obtained. Therefore, naturally, the idea of developing a method for modeling transport processes arises, in which phase trajectories are not calculated based on Newton's laws, but are simulated, and then are used to calculate any observables. In our works, we developed a method of stochastic molecular modeling (STM) of rarefied gas transfer processes, where this idea was implemented. The efficiency of the SMM method was demonstrated by calculating the coefficients of self-diffusion, diffusion, and viscosity of both monoatomic gases and polyatomic gases. At the same time, the possibility of modeling the most complex transfer process – the energy transfer process – has not yet been considered. This work aims to simulate the thermal conductivity coefficient by the SMM method. Both monoatomic (Ar, Kr, Ne, Xe) and polyatomic gases (CH4, O2) were considered.


Entropy ◽  
2019 ◽  
Vol 22 (1) ◽  
pp. 13
Author(s):  
Ivan Anashkin ◽  
Sergey Dyakonov ◽  
German Dyakonov

An expression is proposed that relates the transport properties of polar substances (diffusion coefficient, viscosity coefficient, and thermal conductivity coefficient) with entropy. To calculate the entropy, an equation of state with a good description of the properties in a wide region of the state is used. Comparison of calculations based on the proposed expressions with experimental data showed good agreement. A deviation exceeding 20% is observed only in the region near the critical point as well as at high pressures.


2020 ◽  
Vol 493 (4) ◽  
pp. 5456-5463 ◽  
Author(s):  
Tunahan Demirci ◽  
Niclas Schneider ◽  
Tobias Steinpilz ◽  
Tabea Bogdan ◽  
Jens Teiser ◽  
...  

ABSTRACT A planetesimal moves through the gas of its protoplanetary disc where it experiences a head wind. Though the ambient pressure is low, this wind can erode and ultimately destroy the planetesimal if the flow is strong enough. For the first time, we observe wind erosion in ground-based and microgravity experiments at pressures relevant in protoplanetary discs, i.e. down to $10^{-1}\, \rm mbar$. We find that the required shear stress for erosion depends on the Knudsen number related to the grains at the surface. The critical shear stress to initiate erosion increases as particles become comparable to or larger than the mean free path of the gas molecules. This makes pebble pile planetesimals more stable at lower pressure. However, it does not save them as the experiments also show that the critical shear stress to initiate erosion is very low for sub-millimetre-sized grains.


2010 ◽  
Vol 457 ◽  
pp. 312-317 ◽  
Author(s):  
Ioan Ciobanu ◽  
Mihai Chisamera ◽  
Sorin Ion Munteanu ◽  
Aurel Crişan ◽  
Iulian Riposan ◽  
...  

The paper presents the results of the researches regarding the determination of the thermal conductivity coefficient of the moulds used for cast iron parts in Romanian foundries. The instantaneous values of the thermal conductivity coefficient of the moulds are influenced by the type of materials that compose the moulding batch (sand, binder, additional materials) their content (percentage) their characteristics (grains form and dimensions), but also by the temperature. Many software used for casting solidification uses a mean substitutive value. This one include the effect of heat transmission by conduction in the mould wall and the secondary processes that influence the heat transfer throw the mould wall ( burning processes of organic substances, water evaporation and re-condensation processes, mass transport processes). The determination of this mean value in the case of casting grey cast iron parts with thickness of 20 mm is presented in the paper. A regressive method was applied. The solidification time experimentally determined throw thermal analyses is compared with the solidification time obtained by simulation, in three points of the casting. The value of the substitutive coefficient of thermal conductivity that assure the best closeness between the simulated solidification time and the solidification time experimentally determined throw thermal analysis in the three points was established.


Universe ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 203
Author(s):  
Peter Shternin ◽  
Isaac Vidaña

We consider transport properties of the hypernuclear matter in neutron star cores. In particular, we calculate the thermal conductivity, the shear viscosity, and the momentum transfer rates for npΣ−Λeμ composition of dense matter in β–equilibrium for baryon number densities in the range 0.1–1 fm−3. The calculations are based on baryon interactions treated within the framework of the non-relativistic Brueckner-Hartree-Fock theory. Bare nucleon-nucleon (NN) interactions are described by the Argonne v18 phenomenological potential supplemented with the Urbana IX three-nucleon force. Nucleon-hyperon (NY) and hyperon-hyperon (YY) interactions are based on the NSC97e and NSC97a models of the Nijmegen group. We find that the baryon contribution to transport coefficients is dominated by the neutron one as in the case of neutron star cores containing only nucleons. In particular, we find that neutrons dominate the total thermal conductivity over the whole range of densities explored and that, due to the onset of Σ− which leads to the deleptonization of the neutron star core, they dominate also the shear viscosity in the high density region, in contrast with the pure nucleonic case where the lepton contribution is always the dominant one.


Author(s):  
Ahmed E Aboueregal ◽  
Hamid M Sedighi

The present contribution aims to address a problem of thermoviscoelasticity for the analysis of the transition temperature and thermal stresses in an infinitely circular annular cylinder. The inner surface is traction-free and subjected to thermal shock heating, while the outer surface is thermally insulated and free of traction. In this work, in contrast to the various problems in which the thermal conductivity coefficient is considered to be fixed, this parameter is assumed to be variable depending on the temperature change. The problem is studied by presenting a new generalized thermoelastic model of thermal conductivity described by the Moore–Gibson–Thompson equation. The new model can be constructed by incorporating the relaxation time thermal model with the Green–Naghdi type III model. The Laplace transformation technique is used to obtain the exact expressions for the radial displacement, temperature and the distributions of thermal stresses. The effects of angular velocity, viscous parameter, and variance in thermal properties are also displayed to explain the comparisons of the physical fields.


2004 ◽  
Vol 261-263 ◽  
pp. 1641-1646
Author(s):  
Kenji Machida ◽  
Mamtimin Gheni

The thickness dependency of the temperature image obtained by an infrared thermography was investigated using specimens with three kinds of materials and four kinds of the thickness of the specimen. Only the sum of the principal stresses which is the first invariant of stress tensor is measured, and it is impossible to measure individual stress components directly. Then, the infrared hybrid method was developed to separate individual stress components. Although the form of the contour line of low stress side differs greatly, the distribution form of high stress side was considerably alike. The stress intensity factor of material with low thermal conductivity can be estimated with high accuracy by the infrared hybrid method. On the crack problem, it was elucidated that the influence of thermal conduction is large and an inverse problem analysis is required.


2018 ◽  
Vol 25 (6) ◽  
pp. 1157-1165
Author(s):  
Taoufik Mnasri ◽  
Adel Abbessi ◽  
Rached Ben Younes ◽  
Atef Mazioud

AbstractThis work focuses on identifying the thermal conductivity of composites loaded with phase-change materials (PCMs). Three configurations are studied: (1) the PCMs are divided into identical spherical inclusions arranged in one plane, (2) the PCMs are inserted into the matrix as a plate on the level of the same plane of arrangement, and (3) the PCMs are divided into identical spherical inclusions arranged periodically in the whole matrix. The percentage PCM/matrix is fixed for all cases. A comparison among the various situations is made for the first time, thus providing a new idea on how to insert PCMs into composite matrices. The results show that the composite conductivity is the most important consideration in the first case, precisely when the arrangement plane is parallel with the flux and diagonal to the entry face. In the present work, we are interested in exploring the solid-solid PCMs. The PCM polyurethane and a wood matrix are particularly studied.


Sign in / Sign up

Export Citation Format

Share Document