scholarly journals Thermophysical characteristics of gas-power dual-fuel engines w12v50 df for liquefied gas shipping vessels

2021 ◽  
Vol 2061 (1) ◽  
pp. 012058
Author(s):  
N I Nikolaev ◽  
A S Arangulov

Abstract Maritime transport plays important role in the economic development of society – 90% of goods are transported by ships. At the same time, maritime transport requires a significant amount of fuel resources. Production of liquefied natural gas (LNG) is becoming the fastest growing industry in the modern global energy sector. Today, LNG accounts for 40% of the physical volume of world gas trade, and its share will increase up to 60% by 2040. Currently, natural gas is used on ships in the form of liquefied petroleum gas, compressed natural gas, and liquefied natural gas (LNG). The article deals with the urgent problem of operation of dual-fuel diesel-electric installations of ships. The need to study the heat-engineering parameters of two-fuel diesel generators of the Wartsila company has been substantiated. The authors present the dependencies of main heat-engineering parameters on the load of Wartsila W12V50DF dual-fuel engines used as a generator drive in the main electric propulsion engines on LNG tankers. A comparative assessment of the dependencies of exhaust gas temperature, turbocharger rotation speed, boost pressure and gas pressure on the load of diesel generators on two LNG tankers has been carried out. The article analyzes the presented dependencies. The authors substantiate the need for further improvement of their design and workflow.

Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6127
Author(s):  
Md Arman Arefin ◽  
Md Nurun Nabi ◽  
Md Washim Akram ◽  
Mohammad Towhidul Islam ◽  
Md Wahid Chowdhury

Climate change and severe emission regulations in many countries demand fuel and engine researchers to explore sustainable fuels for internal combustion engines. Natural gas could be a source of sustainable fuels, which can be produced from renewable sources. This article presents a complete overview of the liquefied natural gas (LNG) as a potential fuel for diesel engines. An interesting finding from this review is that engine modification and proper utilization of LNG significantly improve system efficiency and reduce greenhouse gas (GHG) emissions, which is extremely helpful to sustainable development. Moreover, some major recent researches are also analyzed to find out drawbacks, advancement and future research potential of the technology. One of the major challenges of LNG is its higher flammability that causes different fatal hazards and when using in dual-fuel engine causes knock. Though researchers have been successful to find out some ways to overcome some challenges, further research is necessary to reduce the hazards and make the fuel more effective and environment-friendly when using as a fuel for a diesel engine.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4307
Author(s):  
Roberta De Robbio ◽  
Maria Cristina Cameretti ◽  
Ezio Mancaruso ◽  
Raffaele Tuccillo ◽  
Bianca Maria Vaglieco

Dual fuel engines induce benefits in terms of pollutant emissions of PM and NOx together with carbon dioxide reduction and being powered by natural gas (mainly methane) characterized by a low C/H ratio. Therefore, using natural gas (NG) in diesel engines can be a viable solution to reevaluate this type of engine and to prevent its disappearance from the automotive market, as it is a well-established technology in both energy and transportation fields. It is characterized by high performance and reliability. Nevertheless, further improvements are needed in terms of the optimization of combustion development, a more efficient oxidation, and a more efficient exploitation of gaseous fuel energy. To this aim, in this work, a CFD numerical methodology is described to simulate the processes that characterize combustion in a light-duty diesel engine in dual fuel mode by analyzing the effects of the changes in engine speed on the interaction between fluid-dynamics and chemistry as well as when the diesel/natural gas ratio changes at constant injected diesel amount. With the aid of experimental data obtained at the engine test bench on an optically accessible research engine, models of a 3D code, i.e., KIVA-3V, were validated. The ability to view images of OH distribution inside the cylinder allowed us to better model the complex combustion phenomenon of two fuels with very different burning characteristics. The numerical results also defined the importance of this free radical that characterizes the areas with the greatest combustion activity.


Author(s):  
Jiantong Song ◽  
Chunhua Zhang ◽  
Guoqing Lin ◽  
Quanchang Zhang

In order to reduce the fuel consumption and hydrocarbon and CO emissions of liquefied natural gas-diesel dual-fuel engines under light loads, an optimization control scheme, in which the dual-fuel engine runs in original diesel mode under light loads, is used in this paper. The performance and exhaust emissions of the dual-fuel engine and the original diesel engine are compared and analyzed by bench tests of an electronic control common-rail diesel engine. Experimental results show that the brake-specific fuel consumption and hydrocarbon and CO emissions of the liquefied natural gas-diesel dual-fuel engine are not deteriorated under light loads. Compared with diesel, the brake power and torque of dual-fuel remain unchanged, the brake-specific fuel consumption decreases, and the smoke density and CO2 emissions of dual-fuel decrease, while the hydrocarbon and CO emissions increase, and there is no significant difference in NOx emissions.


Processes ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 261 ◽  
Author(s):  
Alberto Boretti

Dual fuel engines using diesel and fuels that are gaseous at normal conditions are receiving increasing attention. They permit to achieve the same (or better) than diesel power density and efficiency, steady-state, and substantially similar transient performances. They also permit to deliver better than diesel engine-out emissions for CO2, as well as particulate matter, unburned hydrocarbons, and nitrous oxides. The adoption of injection in the liquid phase permits to further improve the power density as well as the fuel conversion efficiency. Here, a model is developed to study a high-pressure, 1600 bar, liquid phase injector for liquefied natural gas (LNG) in a high compression ratio, high boost engine. The engine features two direct injectors per cylinder, one for the diesel and one for the LNG. The engine also uses mechanically assisted turbocharging (super-turbocharging) to improve the steady-state and transient performances of the engine, decoupling the power supply at the turbine from the power demand at the compressor. Results of steady-state simulations show the ability of the engine to deliver top fuel conversion efficiency, above 48%, and high efficiencies, above 40% over the most part of the engine load and speed range. The novelty of this work is the opportunity to use very high pressure (1600 bar) LNG injection in a dual fuel diesel-LNG engine. It is shown that this high pressure permits to increase the flow rate per unit area; thus, permitting smaller and lighter injectors, of faster actuation, for enhanced injector-shaping capabilities. Without fully exploring the many opportunities to shape the heat release rate curve, simulations suggest two-point improvements in fuel conversion efficiency by increasing the injection pressure.


Author(s):  
Daniel G. Van Alstine ◽  
David T. Montgomery ◽  
Timothy J. Callahan ◽  
Radu C. Florea

Low natural gas prices have made the fuel an attractive alternative to diesel and other common fuels, particularly in applications that consume large quantities of fuel. The North American rail industry is examining the use of locomotives powered by dual fuel engines to realize savings in fuel costs. These dual fuel engines can substitute a large portion of the diesel fuel with natural gas that is premixed with the intake air. Engine knock in traditional premixed spark-ignited combustion is undesirable but well characterized by the Methane Number index, which quantifies the propensity of a gaseous fuel to autoignite after a period of time at high temperature. Originally developed for spark-ignited engines, the ability of the methane number index to predict a fuel’s “knock” behavior in dual fuel combustion is not as fully understood. The objective of this effort is to evaluate the ability of an existing methane number algorithm to predict rapid combustion in a dual fuel engine. Sets of specialized natural gas fuel blends that, according to the MWM methane number algorithm, should have similar knock characteristics are tested in a dual fuel engine and induced to experience rapid combustion. Test results and CFD analysis reveal that rapid or aggressive combustion rates happen late in the dual fuel combustion event with this engine hardware configuration. The transition from normal combustion to late rapid combustion is characterized by changes in the heat release rate profiles. In this study, the transition is also represented by a shift in the crank angle location of the combustion’s peak heat release rate. For fuels of similar methane number that should exhibit similar knock behavior, these transitions occur at significantly different relative air-fuel ratios, demonstrating that the existing MWM methane number algorithm, while excellent for spark-ignited engines, does not fully predict the propensity for rapid combustion to occur in a dual fuel engine within the scope of this study. This indicates that physical and chemical phenomena present in rapid or aggressive dual fuel combustion processes may differ from those in knocking spark-ignited combustion. In its current form a methane number algorithm can be used to conservatively rate dual fuel engines. It is possible that derivation of a new reactivity index that better predicts rapid combustion behavior of the gaseous fuel in dual fuel combustion would allow ratings to be less conservative.


Author(s):  
Liu Shenghua ◽  
Wang Ziyan ◽  
Ren Jiang

A natural gas and diesel dual-fuel turbocharged compression ignition (CI) engine is developed to reduce emissions of a heavy-duty diesel engine. The compressed natural gas (CNG) pressure regulator is specially designed to feed back the boost pressure to simplify the fuel metering system. The natural gas bypass improves the engine response to acceleration. The modes of diesel injection are set according to the engine operating conditions. The application of honeycomb mixers changes the flowrate shape of natural gas and reduces hydrocarbon (HC) emission under low-load and lowspeed conditions. The cylinder pressures of a CI engine fuelled with diesel and dual fuel are analysed. The introduction of natural gas makes the ignition delay change with engine load. Under the same operating conditions, the emissions of smoke and NOx from the dual-fuel engine are both reduced. The HC and CO emissions for the dual-fuel engine remain within the range of regulation.


2021 ◽  
Vol 7 ◽  
Author(s):  
Hongsheng Guo ◽  
Hailin Li ◽  
Lino Guzzella ◽  
Masahiro Shioji

Sign in / Sign up

Export Citation Format

Share Document