scholarly journals Features of boriding die steel D5 by electron beams

2021 ◽  
Vol 2064 (1) ◽  
pp. 012051
Author(s):  
A S Milonov ◽  
D E Dasheev ◽  
N N Smirnyagina ◽  
A E Lapina

Abstract The microstructure and microhardness of the boride layers formed on die D5 steel by the methods of electron beam borating in vacuum under continuous and impulsive bunch modes are investigated and confronted. Formed layers have a heterogeneous structure, which combines solid and plastic components resulting in the fragility reduction of boride layer.

Author(s):  
D. E. Speliotis

The interaction of electron beams with a large variety of materials for information storage has been the subject of numerous proposals and studies in the recent literature. The materials range from photographic to thermoplastic and magnetic, and the interactions with the electron beam for writing and reading the information utilize the energy, or the current, or even the magnetic field associated with the electron beam.


Author(s):  
Tamotsu Ohno

The energy distribution in an electron; beam from an electron gun provided with a biased Wehnelt cylinder was measured by a retarding potential analyser. All the measurements were carried out with a beam of small angular divergence (<3xl0-4 rad) to eliminate the apparent increase of energy width as pointed out by Ichinokawa.The cross section of the beam from a gun with a tungsten hairpin cathode varies as shown in Fig.1a with the bias voltage Vg. The central part of the beam was analysed. An example of the integral curve as well as the energy spectrum is shown in Fig.2. The integral width of the spectrum ΔEi varies with Vg as shown in Fig.1b The width ΔEi is smaller than the Maxwellian width near the cut-off. As |Vg| is decreased, ΔEi increases beyond the Maxwellian width, reaches a maximum and then decreases. Note that the cross section of the beam enlarges with decreasing |Vg|.


2014 ◽  
Vol 1040 ◽  
pp. 778-783 ◽  
Author(s):  
Daria Mul ◽  
Dina S. Krivezhenko ◽  
Daria B. Lazurenko ◽  
Olga G. Lenivtseva ◽  
Alexandra Chevakinskaya

The surface layer of steel was reinforced by electron-beam cladding at air atmosphere. Two types of powder mixtures were used to receive coatings: (1) titanium and graphite, (2) titanium and boron carbide. The formation of heterogeneous structure was observed in specimens after the electron-beam treatment by the methods of optical microscopy and scanning electron microscopy. The X-ray diffraction analysis was used to analyze the phase composition of the coatings. The wear resistance level of the coatings was estimated by friction test against loosely fixed abrasive particles. It was found that surface alloying of steel with carbon containing components led to the formation of material with an enhanced wear resistance level.


2008 ◽  
Vol 26 (4) ◽  
pp. 605-617 ◽  
Author(s):  
V.F. Tarasenko ◽  
E.H. Baksht ◽  
A.G. Burachenko ◽  
I.D. Kostyrya ◽  
M.I. Lomaev ◽  
...  

AbstractThis paper reports on the properties of a supershort avalanche electron beam generated in the air or other gases under atmospheric pressure and gives the analysis of a generation mechanism of supershort avalanche electron beam, as well as methods of such electron beams registration. It is reported that in the air under the pressure of 1 atm, a supershort (<100 ps) avalanche electron beam is formed in the solid angle more than 2π steradian. The electron beam has been obtained behind a 45 µm thick Al-Be foil in SF6 and Xe under the pressure of 2 atm, and in He, under the pressure of about 15 atm. It is shown that in SF6 under the high pressure (>1 atm) duration (full width at half maximum) of supershort avalanche electron beam pulse is about 150 ps.


2013 ◽  
Vol 31 (8) ◽  
pp. 1379-1385 ◽  
Author(s):  
A. Voshchepynets ◽  
V. Krasnoselskikh

Abstract. In this work, we studied the effects of background plasma density fluctuations on the relaxation of electron beams. For the study, we assumed that the level of fluctuations was so high that the majority of Langmuir waves generated as a result of beam-plasma instability were trapped inside density depletions. The system can be considered as a good model for describing beam-plasma interactions in the solar wind. Here we show that due to the effect of wave trapping, beam relaxation slows significantly. As a result, the length of relaxation for the electron beam in such an inhomogeneous plasma is much longer than in a homogeneous plasma. Additionally, for sufficiently narrow beams, the process of relaxation is accompanied by transformation of significant part of the beam kinetic energy to energy of accelerated particles. They form the tail of the distribution and can carry up to 50% of the initial beam energy flux.


2015 ◽  
Vol 11 (S320) ◽  
pp. 239-242
Author(s):  
Jianxia Cheng ◽  
Mingde Ding

AbstractSolar flares produce radiations in very broad wavelengths. Spectra can supply us abundant information about the local plasma, such as temperature, density, mass motion and so on. Strong chromospheric lines, like the most studied Hα and Ca II 8542 Å lines are formed under conditions of departures from local thermodynamic equilibrium in the lower atmosphere subject to flare heating. Understanding how these lines are formed is very useful for us to correctly interpret the observations. In this paper, we try to figure out the response of chromospheric lines heated by different periodic non-thermal electron beams. Our results are based on radiative hydrodynamic simulations. We vary the periods of electron beam injection from 1.25 s to 20 s. We compare the response times to different heating parameters. Possible explanations are discussed.


1994 ◽  
Vol 12 (1) ◽  
pp. 17-21 ◽  
Author(s):  
C.B. McKee ◽  
John M.J. Madey

Free electron lasers (FELs) place very stringent requirements on the quality of electron beams. Present techniques for commissioning and operating electron accelerators may not be optimized to produce the high brightness beams needed. Therefore, it is proposed to minimize the beamline errors in electron accelerator transport systems by minimizing the deviations between the experimentally measured and design transport matrices of each beamline section. The transport matrix for each section is measured using evoked responses. In addition, the transverse phase space of the beam is reconstructed by measuring the spatial distribution of the electrons at a number of different betatron phases and applying tomographic techniques developed for medical imaging.


2021 ◽  
Vol 229 ◽  
pp. 01041
Author(s):  
Kamal Saidi ◽  
Redouane El Baydaoui ◽  
Hanae El Gouach ◽  
Othmane Kaanouch ◽  
Mohamed Reda Mesradi

TrueBeam STx latest generation linear accelerators (linacs) installed at Sheikh Khalifa International University Hospital in Casablanca, Morocco. The aim of this is to present and compare the result of the Electron commissioning measurement on TrueBeam Stx and clinac iX installed at Sheikh Khalifa International University Hospital in Casablanca, Morocco. A compariaon of eMC calculations and measurements for TrueBeam Stx were evaluated. Dosimetric parameters are systematically measured using a large water phantom 3D scanning system MP3 Water Phantom (PTW, Freiburg, Germany). The data of the electron beams commissioning including depth dose curves for each applicator, depth dose curves without applicator and the profile in air for a large field size 40x 40cm2, and the Absolute Dose (cGy/MU) for each applicator. All the data were examined and compared for five electron beams (E6MeV, E9MeV, E12MeV, E16MeV and E20MeV) of Varian’s TrueBeam STx and Clinac iX machines. A comparison, between measurement PDDs and calculated by the Eclipse electron Monte Carlo (eMC) algorithm were performed to validate Truebeam Stx commissioning. All this measurements were performed with a Roos and Markus plane parallel chamber. Our measured data indicated that electron beam PDDs from the TrueBeam Stx machine are well matched to those from our Varian Clinac iX machine. Significant differences between TrueBeam and Clinac iX were found in in‐air profiles and open field output. Maximum depth dose for the TrueBeam Stx and Clinac iX for the following energies (6, 9, 12, 16, 20 MeV) are respectively (1.15; 1.89; 2.6; 3.1; and 2.35) and (1.24; 1.95; 2.70; 2.99 and 2.4cm). For the TrueBeam Stx and Clinac iX the quality index R50 for applicator 15x15 cm2 are in the tolerance intervals. Surface dose increases by increasing energy for both machines. The Absolute Dose (cGy/MU) calibrated for both machine in Dmax at 1cGy/MU for the reference field size cone 15x15 cm2. Bremsstrahlung tail Rp per energy levels as follows for the TrueBeam Stx : 6 MeV – 2.85 cm, 9 MeV – 4.28 cm, 12 MeV – 5.97 cm, 16 MeV – 7.88 cm and 20 MeV – 9.86 cm. and for the Clinac iX : 6 MeV – 2.86 cm, 9 MeV – 4.32 cm, 12 MeV – 5.96 cm, 16 MeV – 7.93 cm and 20 MeV – 10.08 cm. A good agreement between modeled and measured data is observed.


Sign in / Sign up

Export Citation Format

Share Document