scholarly journals Thermal Modelling for Laser Machining of SS316 L, Inconel 718 and Ti6Al4V

2021 ◽  
Vol 2070 (1) ◽  
pp. 012226
Author(s):  
Ganesh Dongre ◽  
Avadhoot Rajurkar ◽  
Akash Haria ◽  
Abhilash Kulkarni ◽  
Ravi Raut

Abstract Laser beam machining is a complex thermal process of material removal. In this process, thermal energy is used to vaporize and remove the material from a particular area. Hence a comprehensive study is needed to completely understand the process which can be achieved by a simulation model and its validation through experimentation. In this paper this was achieved with an experimental study to see the relation between the Laser power and the material removal rate (MRR) of SS 316 L, Inconel 718 and Ti6Al4V during the process of Laser Machining. Also a 3D transient model of a moving Gaussian heat source was developed in ANSYS 18.2 to predict the MRR for different values of laser power. Mesh sensitivity analysis was done prior to the usage of the model so as to choose the perfect mesh size which can give the best results possible. After validation of the model, a close correlation was found between the experimental data and the simulation results. In the simulation model it was also observed that the temperature is maximum at the point of contact of the laser and is comparatively very high for a fraction of second.

Author(s):  
Sundar Marimuthu ◽  
Bethan Smith

This manuscript discusses the experimental results on 300 W picosecond laser machining of aerospace-grade nickel superalloy. The effect of the laser’s energetic and beam scanning parameters on the machining performance has been studied in detail. The machining performance has been investigated in terms of surface roughness, sub-surface thermal damage, and material removal rate. At optimal process conditions, a picosecond laser with an average power output of 300 W can be used to achieve a material removal rate (MRR) of ∼140 mm3/min, with thermal damage less than 20 µm. Shorter laser pulse widths increase the material removal rate and reduce the resultant surface roughness. High scanning speeds improve the picosecond laser machining performance. Edge wall taper of ∼10° was observed over all the picosecond laser machined slots. The investigation demonstrates that high-power picosecond lasers can be used for the macro-machining of industrial components at an acceptable speed and quality.


2017 ◽  
Author(s):  
Zhigang Wang

The water guided laser micro-jet (LMJ) is a new potential method to machine aero engine parts with much less heat affected area and faster cutting speed than dry laser machining. The focus of this paper is to investigate the energy density and material removal for a dual-laser LMJ system. Then, the effects of dominated parameters on the energy density of LMJ are analyzed. Finally, a mathematical model is developed to describe the relationship between dominant laser parameters with the energy density of LMJ and material removal rate followed by machining case studies of aero engine components.


2009 ◽  
Vol 620-622 ◽  
pp. 451-456 ◽  
Author(s):  
Steven Danyluk ◽  
Travis Blackburn ◽  
David Butler ◽  
Leo Cheng Seng

Non-contact material removal processes offer numerous advantages over traditional machining approaches and nowhere is this more apparent than in the fabrication of micro devices. Current micromachining techniques such as microgrinding and micromilling have limitations with respect to their positioning accuracy and tool deflections. Electro thermal processes such as microEDM and laser machining usually result in a heat affected zone being produced. Other approaches such as etching and non-contact ultraprecision polishing are either costly or are not suitable for high throughput. In order to address these limitations, alternative micromachining techniques are required. In this paper, a non-contact material removal technique based on the electrokinetic phenomenon is proposed for precise material removal at rates in the order of nanometers/min. The aim of this research is to have a better understanding on the electrokinetic material removal technique by studying the trajectory of the particles and the influence of the frequency of the electric field on the material removal rate.


Author(s):  
Leonardo Orazi ◽  
Gabriele Cuccolini ◽  
Giovanni Tani

In this paper a system for the automatic determination of the material removal rate during laser milling process is presented. “Laser milling” can be defined as an engraving process with a strictly controlled penetration depth. In industrial applications, when a new material have to be machined or a change in the system set-up occur the user has to perform a time-consuming experimental campaign in order to determine the correlation between the material removal rate and the process parameters. In these cases the numerical models present some limits due to the elevated calculation time requested to simulate the laser milling of industrial features. In the proposed system, based on a regression model approach, the empirical coefficients, that provide the material removal rate, are automatically generated by a specific software according to the different materials that have to be processed. A description of the automated method and the results obtained in engraving TiAl6V4 and Inconel 718 superalloy with a fiber laser are presented. The system can be adapted to every combination of material/laser source.


Author(s):  
Vivek Aggarwal ◽  
Rajiv K Garg ◽  
Sehijpal Singh Khangura

In this paper, a thorough review has been presented on the latest research work carried out for the enhancement of machining performance of one of the most commonly used superalloys that is, Inconel 718. The thermal energy has been frequently utilized for improving machinability characteristics of Inconel 718. The review of available literature indicates that plasma, laser, and electric discharge have been the major sources used for the enhancement of tool life, material removal rate, surface integrity, and reduction of cutting forces during machining of Inconel 718. However, a very few efforts have been made as regards to the use of wire electrical discharge machining and other energies like mechanical, electrochemical, and chemical for machining of this material. Moreover, the reported work on machining of Inconel 718 is largely focused on drilling operations. There is ample scope for research work on various other machining operations using alternative energies to gain more insight into machining of Inconel 718 and other similar superalloys.


2010 ◽  
Vol 1249 ◽  
Author(s):  
Padraig Timoney ◽  
Eamonn Ahearne ◽  
Gerald Byrne

AbstractOptimisation of spatial uniformity of material removal in chemical mechanical planarization requires an understanding of the mechanics of the wafer carrier system. Finite element analyses have been carried out by researchers identifying relationships between von Mises stress distribution and material removal rate. However, in many of these wafer scale models, the derivation of the material properties of the polishing pad and sub pad is unclear and consequently a large variation in values used is observed. Models are generally validated with a procedure different to that simulated in the model and with different output variables. Few models have incorporated the industry standard method of pressurizing the backside of the wafer independently to the wafer carrier loading using a pressurized air chamber located directly behind the backside of the wafer. The anticipated introduction of 450mm diameter wafers has surprisingly not been accompanied by wafer scale models investigating the issues that will arise from the diameter and thickness scaling ratio of the wafer.This paper presents a unique approach to finite element modeling of CMP incorporating realistic boundary conditions for the wafer carrier and platen assemblies. Model predictions of interfacial contact pressure for a 200mm wafer loaded by a lip seal type carrier head were validated by unique measurements of the contact pressure between the wafer and the pad using Fujifilm Prescale TM pressure measurement film and accompanying analysis software. The results demonstrated a close correlation between the model's prediction and the measured values. Results are presented for the upscaling of this validated model to 450mm wafer dimensions. The results indicate a doubling of the contact pressure maximum values compared to the 200mm wafer model. These results illustrate the extent of the challenge facing CMP tool vendors in increasing the level of control of the mechanical force distributed by the wafer carrier on 450mm wafers. The model can be used as a design tool to optimize machine and process parameters.


Sign in / Sign up

Export Citation Format

Share Document