scholarly journals Generation of stable mode-locked fiber laser based MWCNTs in 1.5-µm waveband

2021 ◽  
Vol 2075 (1) ◽  
pp. 012008
Author(s):  
M A Mat Salim ◽  
M A Ismail ◽  
M Z A Razak ◽  
Saaidal R. Azzuhri ◽  
H Bakhtiar ◽  
...  

Abstract Pulses fiber laser had been successfully generated by using multi-wall carbon nanotubes thin film saturable absorber at room temperature. The saturable absorber is incorporated into a ring laser cavity. A stable Kelly sidebands mode-locked pulse spectrum with 1561.3 nm wavelength at the pump power of 86.8 mW. The repetition rate and pulse width of 12.3 MHz and 0.51 picosecond, respectively. A stable operation is observed for an hour at room temperature. These simple and reliable system features offer interesting research study especially in mode-locked pulse generation at 1.5 μm waveband.

2015 ◽  
Vol 74 (8) ◽  
Author(s):  
A. A. Latiff ◽  
M. T. Ahmad ◽  
Z. Zakaria ◽  
H. Ahmad ◽  
S. W. Harun

An 1892.4 nm ultrafast passive Q-switched fiber laser is demonstrated by using Thulium-doped fiber (TDF) in conjunction with a multi-walled carbon nanotubes (MWCNTs) as a saturable absorber (SA). The MWCNTs film is sandwiched between two FC/PC fiber connectors and integrated into the laser cavity with 802 nm pump for Q-switching pulse generation. The pulse repetition rate can be tuned from 3.8 to 4.6 kHz while the corresponding pulse width reduces from 22.1 to 18.4 μs as the pump power is increased from 187.3 to 194.2 mW. A higher performance Q-switched Thulium-doped fiber laser (TDFL) is expected to be achieved with the optimization of the MWCNT-SA saturable absorber and laser cavity.


2018 ◽  
Vol 7 (4.15) ◽  
pp. 298
Author(s):  
Yousif I. Hammadi ◽  
Tahreer S. Mansour

A passively pulsed fiber laser using saturable absorbers such as graphene has been increased dramatically in recent years. Up to now, researchers have been proposed many methods to fabricate graphene saturable absorber such as (evanescent coupling structure, electrochemical exfoliation, and mechanical exfoliation) for light pulse generation in a fiber laser. However, each of these methods has got some limitations which reduce the saturable absorber performance and restrict its range of applications. In this paper, we propose a simple but very efficient fabrication way of graphene saturable absorber by converting graphene Nano powder into a thin film using polyvinyl alcohol (PVA) as a host material. The fabricated film can then be easily sandwiched between two fiber pigtails and inserted inside the laser cavity to form the saturable absorber. when compared with other methods, this method is much preferable because it provides saturable absorber with combat structure, maximum interaction area, reasonable insertion loss, polarization insensitive, controllable concentration, and safe to handle. The fabricated graphene saturable absorber in this paper was characterized and found to have a uniform distribution of the graphene nanomaterial in the PVA and have a modulation depth of 6.1% which make it a very promising saturable absorber for ultra-fast fiber laser demonstration.  


Nanophotonics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 2569-2576 ◽  
Author(s):  
Lu Li ◽  
Lihui Pang ◽  
Qiyi Zhao ◽  
Yao Wang ◽  
Wenjun Liu

AbstractTransition metal dichalcogenides have been widely utilized as nonlinear optical materials for laser pulse generation applications. Herein, we study the nonlinear optical properties of a VS2-based optical device and its application as a new saturable absorber (SA) for high-power pulse generation. Few-layer VS2 nanosheets are deposited on the tapered region of a microfiber to form an SA device, which shows a modulation depth of 40.52%. After incorporating the microfiber-VS2 SA into an Er-doped fiber laser cavity, passively Q-switched pulse trains could be obtained with repetition rates varying from 95 to 233 kHz. Under the pump power of 890 mW, the largest output power and shortest pulse duration are measured to be 43 mW and 854 ns, respectively. The high signal-to-noise ratio of 60 dB confirms the excellent stability of the Q-switching state. To the best of our knolowdge, this is the first illustration of using VS2 as an SA. Our experimental results demonstrate that VS2 nanomaterials have a large potential for nonlinear optics applications.


2020 ◽  
Vol 131 ◽  
pp. 106397 ◽  
Author(s):  
Guowei Liu ◽  
Junjie Yuan ◽  
Yudong Lyu ◽  
Tiange Wu ◽  
Zongwen Li ◽  
...  

2019 ◽  
Vol 10 ◽  
pp. 1065-1072 ◽  
Author(s):  
Ji-Shu Liu ◽  
Xiao-Hui Li ◽  
Abdul Qyyum ◽  
Yi-Xuan Guo ◽  
Tong Chai ◽  
...  

Fe3O4 nanoparticles (FONPs) are magnetic materials with a small band gap and have well-demonstrated applications in ultrafast photonics, medical science, magnetic detection, and electronics. Very recently, FONPs were proposed as an ideal candidate for pulse generation in fiber-based oscillators. However, the pulses obtained to date are on the order of microseconds, which is too long for real application in communication. Here, we report the use of FONPs synthesized by a sol–hydrothermal method and used as a saturable absorber (SA) to achieve nanosecond pulses in an erbium-doped fiber laser (EDFL) for the first time. The proposed fiber laser is demonstrated to have a narrow spectral width of around 0.8 nm and a fixed fundamental repetition rate (RPR) of 4.63 MHz, whose spectra and pulse dynamics are different from the mode-locked lasers reported previously. It is demonstrated that the proposed fiber laser based on a FONP SA operates in the giant-chirp mode-locked regime. The most important result is the demonstration of a pulse duration of 55 ns at an output power of 16.2 mW, which is the shortest pulse based on FONPs for EDFLs reported to date. Our results demonstrate that the FONP dispersion allows for an excellent photonic material for application in ultrafast photonics devices, photoconductive detectors, and optical modulators.


2019 ◽  
Vol 50 ◽  
pp. 23-30 ◽  
Author(s):  
A.R. Muhammad ◽  
R. Zakaria ◽  
M.T. Ahmad ◽  
P. Wang ◽  
S.W. Harun

Author(s):  
Bilal Nizmani ◽  
Faisal Ahmed Memon ◽  
Bhawani Shankar Chowdhary ◽  
Ghulam Fizza ◽  
Suleiman Wadi Harun

In this work, we have experimentally reported Q-switched pulse generation by indium tin oxide as a saturable absorber. First the glass slide was placed in electron beam deposition chamber and indium tin oxide layer was coated over the glass slide. Then the indium tin oxide was exfoliated from the glass slide, over the fiber ferrules in erbium doped fiber laser cavity. The Q-switched laser operated at center wavelength of 1562.6 nm. The repetition rate and pulse width were obtained to be 48.31-64.52 kHz and 5.65-4.23 µs, respectively.


2020 ◽  
Vol 8 ◽  
Author(s):  
Meng Wang ◽  
Yijian Huang ◽  
Zongpeng Song ◽  
Jincheng Wei ◽  
Jihong Pei ◽  
...  

We report on mode-locked thulium-doped fiber lasers with high-energy nanosecond pulses, relying on the transmission in a semiconductor saturable absorber (SESA) and a carbon nanotube (CNTs-PVA) film separately. A section of an SMF–MMF–SMF structure multimode interferometer with a transmission peak wavelength of ∼2003 nm was used as a wavelength selector to fix the laser wavelength. When the SESA acted as a saturable absorber (SA), the mode-locked fiber laser had a maximum output power of ∼461 mW with a pulse energy of ∼0.14 μJ and a pulse duration of ∼9.14 ns. In a CNT-film-based mode-locked fiber laser, stable mode-locked pulses with the maximum output power of ∼46 mW, pulse energy of ∼26.8 nJ and pulse duration of ∼9.3 ns were obtained. To the best of our knowledge, our experiments demonstrated the first 2 μm region ‘real’ SA-based dissipative soliton resonance with the highest mode-locked pulse energy from a ‘real’ SA-based all-fiberized resonator.


Sign in / Sign up

Export Citation Format

Share Document