scholarly journals CPS-SPWM Implementation Based on Multi - Controller Collaboration

2021 ◽  
Vol 2076 (1) ◽  
pp. 012112
Author(s):  
HongShe Dang ◽  
JunDa Li

Abstract In order to improve the modularization degree of cascaded H-bridge converter and reduce the development cost, a modularized carrier phase shifted sine pulse width modulation (CPS-SPWM) based on multi-controller is proposed in this paper, which can easily increase or decrease the number of submodules in cascaded H-bridge. In order to solve the problem of coordination in multi-controller structure, a two-stage control structure is proposed, which uses the master controller to carry out closed-loop control for multiple slave controllers, and uses the approximate natural sampling method to realize digital CPS-SPWM modulation, which reduces computation and makes full use of controller resources. The experimental result shows that the stepped voltage waveform output by the proposed method at the AC side is of high quality and H bridge submodule is easy to be increased and decreased.

2012 ◽  
Vol 241-244 ◽  
pp. 509-512
Author(s):  
Lin Yang ◽  
Gen Wang Liu

In order to improve the dynamic performance of inverter and the output voltage waveform quality, the double-loop control combination with internal current loop and external voltage loop is introduced. The inner loop is used for improving the dynamic performance of the system and rapidly eliminating the effects of load disturbance; the outer loop is used for improving static performance of the system. In the end, MATLAB / Simulink is carried out to build the system model and prove the feasibility of the dual closed-loop control structure in this paper.


Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1832
Author(s):  
Jinfeng Liu ◽  
Xin Qu ◽  
Herbert Ho-Ching Iu

Low-voltage and high-current direct current (DC) power supplies are essential for aerospace and shipping. However, its robustness and dynamic response need to be optimized further on some special occasions. In this paper, a novel rectification system platform is built with the low-voltage and high-current permanent magnet synchronous generator (PMSG), in which the DC voltage double closed-loop control system is constructed with the backstepping control method and the sliding mode variable structure (SMVS). In the active component control structure of this system, reasonable virtual control variables are set to obtain the overall structural control variable which satisfied the stability requirements of Lyapunov stability theory. Thus, the fast-tracking and the global adjustment of the system are realized and the robustness is improved. Since the reactive component control structure is simple and no subsystem has to be constructed, the SMVS is used to stabilize the system power factor. By building a simulation model and experimental platform of the 5 V/300 A rectification module based on the PMSG, it is verified that the power factor of the system can reach about 98.5%. When the load mutation occurs, the DC output achieves stability again within 0.02 s, and the system fluctuation rate does not exceed 2%.


2013 ◽  
Vol 457-458 ◽  
pp. 1298-1302 ◽  
Author(s):  
Xuan Zuo Liu ◽  
Qiao Yun Yan ◽  
Fei Yun Tang

AbstractConsidering the influence of the dynamic characteristic of automatic guided vehicle (AGV) on trajectory tracking controlling, double closed loop control structure is proposed to realize the position/force cooperative control. The outer loop controlling uses backstepping to design corresponding position controller for kinematics model of AGV, while the inner control uses the integral sliding mode controlling. Self-adaptive controlling law is used to estimate the uncertain external interference in the driving force controller and stability of AGV trajectories tracking proof is proposed. In order to make the system achieve better control performance and prevent the occurrence of severe wobble, the hyperbolic tangent function in the control law of sliding mode control replaces the sign function to ensure a continuously smooth control input and states of the system. In the Matlab/simulink environment, tracking a given splayed trajectory generated by the S function to verify the double closed loop control structure and the effectiveness of the control algorithm proposed in this paper.


Photovoltaic (PV) based multilevel inverters (MLI) have emerged as one of the best alternatives for grid/standalone applications. MLIs offer high range power handling capability with low current and voltage distortion and lesser switching losses as compare to the traditional two-level inverter. Major challenges with generally used multilevel inverter topologies relates to capacitor voltage variation, modulation techniques, and control. The major center of attention of research in this paper is to build up sophisticated modulation and voltage balancing methods for multilevel inverter topologies, competent to reach capacitor voltage parameter and to decrease power switching losses of the inverters. The present paper focuses on closed-loop control of multilevel flying capacitor inverter (FCI). In FCI, the phase shift (PS) based pulse width modulation method is designed and investigated. The closed-loop controller is designed with input voltage control of MLI, whose source is solar PV based Boost converter. Reported simulation results prove the superiority of the closed loop control in maintaining the desired output voltage for various reference values.


Author(s):  
Varsha Singh ◽  
S. Gupta ◽  
S. Pattnaik ◽  
Aarti Goyal

<p>This paper proposes a novel approach for obtaining a closed loop control scheme based on Fuzzy Logic Controller to regulate the output voltage waveform of multilevel inverter. Fuzzy Logic Controller is used to guide and control the inverter to synthesize a stepped output voltage waveform with reduced harmonics. In this paper, three different intelligent soft-computing methods are used to design a fuzzy system to be used as a closed loop control system for regulating the inverter output. Gravitational Search Algorithm and Genetic Algorithm are used as optimization methods to evaluate switching angles for different combination of input voltages applied to MLI. Wavelet Transform is used as synthesizing technique to shape stepped output waveform of inverter using orthogonal wavelet sets. The proposed FLC controlled method is carried out for a wider range of input dc voltages by considering ±10% variations in nominal voltage value. A 7-level inverter is used to validate the results of proposed control methods. The three proposed methods are then compared in terms of various parameters like computational time, switching angles and THD to justify the performance and system flexibility. Finally, hardware based results are also obtained to verify the viability of the proposed method.</p>


2018 ◽  
Vol 2018 ◽  
pp. 1-18 ◽  
Author(s):  
Yu-Hsing Chen ◽  
Catalin Gabriel Dincan ◽  
Philip Kjær ◽  
Claus Leth Bak ◽  
Xiongfei Wang ◽  
...  

This paper focuses on the modelling of the series resonant converter proposed as a DC/DC converter for DC wind turbines. The closed-loop control design based on the discrete time domain modelling technique for the converter (named SRC#) operated in continuous-conduction mode (CCM) is investigated. To facilitate dynamic analysis and design of control structure, the design process includes derivation of linearized state-space equations, design of closed-loop control structure, and design of gain scheduling controller. The analytical results of system are verified in z-domain by comparison of circuit simulator response (in PLECS™) to changes in pulse frequency and disturbances in input and output voltages and show a good agreement. Furthermore, the test results also give enough supporting arguments to proposed control design.


Author(s):  
J. K. Moharana

The concept of H Control is extended, in principle, to the SVPWM (Space Vector Pulse Width Modulation) based inverter switching of a STATCOM (STATic synchronous COMpensator) device. The SVPWM assures a greater value of modulation factor in the undermodulation as well as the overmodulation range compared to SPWM (Sine Pulse Width Modulation) i.e. a much higher fundamental content. In the present work, the STATCOM has been modeled and its model is nonlinear in  (phase angle between fundamental of system voltage and output voltage of STATCOM. The effect of increased modulation index and lower harmonic distortion has been studied through simulation w.r.t. different performance indices and dynamic response of relevant variables. A PI and an H Controller have been designed for closed-loop control of the system. It is found through simulation that H controller gives better response than PI controller for nonlinear system.


Sign in / Sign up

Export Citation Format

Share Document