scholarly journals Analytically Modeling, Design and Analysis a Nonlinear Controller for a STATCOM operations

Author(s):  
J. K. Moharana

The concept of H Control is extended, in principle, to the SVPWM (Space Vector Pulse Width Modulation) based inverter switching of a STATCOM (STATic synchronous COMpensator) device. The SVPWM assures a greater value of modulation factor in the undermodulation as well as the overmodulation range compared to SPWM (Sine Pulse Width Modulation) i.e. a much higher fundamental content. In the present work, the STATCOM has been modeled and its model is nonlinear in  (phase angle between fundamental of system voltage and output voltage of STATCOM. The effect of increased modulation index and lower harmonic distortion has been studied through simulation w.r.t. different performance indices and dynamic response of relevant variables. A PI and an H Controller have been designed for closed-loop control of the system. It is found through simulation that H controller gives better response than PI controller for nonlinear system.

Teknik ◽  
2020 ◽  
Vol 41 (1) ◽  
pp. 55-61
Author(s):  
Abdul Syakur ◽  
Arifin Wibisono

The application of high voltage becomes more important and wider. High voltage is needed in the process of reducing air contaminants, waste treatment, sanitation, disinfecting microorganisms, testing for insulating high voltage equipment, and transmitting electrical energy. The problem of high voltage AC generation system is still in a large scale, static, not portable, and very expensive. This paper presents an analytical design of a high-voltage AC high-frequency based on power electronic. It is portable, less expensive, and eaasier to control the amplitudo and frequency. The application of the Full Bridge Bipolar Inverter topology with the Sinusoidal Pulse Width Modulation switching method provides variable sinusoidal AC voltage outputs (Vo) on its amplitude and frequency. The Tesla Coil Transformer amplifies the amplitude in accordance with the classification of the high voltage AC in the order of Kilo Volt. The Closed Loop control system in the Bipolar Inverter Full Bridge topology provides high accuracy results between the given setting values and the actual amplitude output and the expected high-frequency AC voltage. Analysis of the SPWM switching pattern parameter settings shows stability for several loading variations


Author(s):  
Kah Haw Law ◽  
Wendy Pei Qin Ng ◽  
Wei Kitt Wong

This paper presents the closed loop DC-DC flyback converter with multi-level cascaded H-bridge inverter (MCHI) for transformer-less static synchronous compensator (STATCOM) system. The STATCOM system is proposed to be controlled using decoupled dq vector control incorporating the new reactive current reference algorithm and multi-level selective harmonic elimination pulse width modulation (MSHEPWM) technique. This ensures transient performance enhancement as well as simpler control and modulation technique implementation for dynamic systems. As the proposed MSHEPWM solely depends on adjustable DC-link voltage levels, flyback converter is designed for that purpose to suit wider applications. In current work, a single phase five-levels CHI based STATCOM system incorporated with the aforementioned converters are presented to compensate the reactive power (VAR) at the point of common connection (PCC). The dynamic as well as the transient performances of the developed STATCOM control system and the proposed voltage closed loop control of each converter are investigated to meet different VAR demands at balanced loading conditions. Simulation studies are performed to verify the effectiveness and theoretical analysis of the approaches presented.


2020 ◽  
Vol 13 (4) ◽  
pp. 818-824
Author(s):  
Jakob L. Dideriksen ◽  
Irene Uriarte Mercader ◽  
Strahinja Dosen

Author(s):  
Taha A. Hussein ◽  
Laith A. Mohammed

Space vector pulse width modulation (SVPWM) generates less harmonic distortion in the output voltage or currents, provides more efficient use of supply voltage and better voltage utilization compared with sine pulse width modulation (PWM). In this work, a detailed Simulink implementation for SVPWM for the open loop control of permanent magnet synchronous motor (PMSM) is presented. Results show the output of the blocks that assembles SVPWM besides the PMSM voltages and currents when exposing the motor to different load torques. The technique of SVPWM enables the load to respond to the change in external load torque. This technique also results in lower total harmonic distortion and better utilization of the direct current (DC) supply compared with traditional sinusoidal pulse width modulation sinusoidal pulse width modulation (SPWM).


Photovoltaic (PV) based multilevel inverters (MLI) have emerged as one of the best alternatives for grid/standalone applications. MLIs offer high range power handling capability with low current and voltage distortion and lesser switching losses as compare to the traditional two-level inverter. Major challenges with generally used multilevel inverter topologies relates to capacitor voltage variation, modulation techniques, and control. The major center of attention of research in this paper is to build up sophisticated modulation and voltage balancing methods for multilevel inverter topologies, competent to reach capacitor voltage parameter and to decrease power switching losses of the inverters. The present paper focuses on closed-loop control of multilevel flying capacitor inverter (FCI). In FCI, the phase shift (PS) based pulse width modulation method is designed and investigated. The closed-loop controller is designed with input voltage control of MLI, whose source is solar PV based Boost converter. Reported simulation results prove the superiority of the closed loop control in maintaining the desired output voltage for various reference values.


2021 ◽  
Vol 2076 (1) ◽  
pp. 012112
Author(s):  
HongShe Dang ◽  
JunDa Li

Abstract In order to improve the modularization degree of cascaded H-bridge converter and reduce the development cost, a modularized carrier phase shifted sine pulse width modulation (CPS-SPWM) based on multi-controller is proposed in this paper, which can easily increase or decrease the number of submodules in cascaded H-bridge. In order to solve the problem of coordination in multi-controller structure, a two-stage control structure is proposed, which uses the master controller to carry out closed-loop control for multiple slave controllers, and uses the approximate natural sampling method to realize digital CPS-SPWM modulation, which reduces computation and makes full use of controller resources. The experimental result shows that the stepped voltage waveform output by the proposed method at the AC side is of high quality and H bridge submodule is easy to be increased and decreased.


Author(s):  
Chinnapettai Ramalingam Balamurugan ◽  
P. Vijayakumar ◽  
T. Sengolrajan

<p>In this paper, simulation using MATLAB/SIMULINK is performed with<br />bipolar triangular fixed amplitude multi-carrier Phase Disposition (PD)<br />PWM strategy with sine wave, Third Harmonic Injection, 60 degree Pulse Width Modulation and stepped wave reference for the chosen impedance Source based H-Type flying capacitor Multilevel Inverter (ISBH-Type FCMLI). The root means square value of the fundamental component and Total Harmonic Distortion of the output voltage which are the most important performance indices for the chosen inverter topologies are evaluated presented and compared for various references through duty ratios. From the simulation results it is observed that for various references the THD is almost similar but the root mean square value in terms of voltage is more for THI, 60 degree PWM and stepped wave reference with phase disposition strategy. The results are obtained for ma (amplitude modulation index) &lt; 1 (under amplitude modulation index), ma=1 (normal amplitude modulation index) and ma &gt; 1 (over amplitude modulation index).</p>


2012 ◽  
Vol 220 (1) ◽  
pp. 3-9 ◽  
Author(s):  
Sandra Sülzenbrück

For the effective use of modern tools, the inherent visuo-motor transformation needs to be mastered. The successful adjustment to and learning of these transformations crucially depends on practice conditions, particularly on the type of visual feedback during practice. Here, a review about empirical research exploring the influence of continuous and terminal visual feedback during practice on the mastery of visuo-motor transformations is provided. Two studies investigating the impact of the type of visual feedback on either direction-dependent visuo-motor gains or the complex visuo-motor transformation of a virtual two-sided lever are presented in more detail. The findings of these studies indicate that the continuous availability of visual feedback supports performance when closed-loop control is possible, but impairs performance when visual input is no longer available. Different approaches to explain these performance differences due to the type of visual feedback during practice are considered. For example, these differences could reflect a process of re-optimization of motor planning in a novel environment or represent effects of the specificity of practice. Furthermore, differences in the allocation of attention during movements with terminal and continuous visual feedback could account for the observed differences.


Sign in / Sign up

Export Citation Format

Share Document