scholarly journals The Study of Recycled Ethylene Propylene Diene Monomer (EPDM-r)/Polypropylene (PP) Polymeric Blends

2021 ◽  
Vol 2080 (1) ◽  
pp. 012012
Author(s):  
MH Zulkifli ◽  
MSM Rasidi ◽  
NAM Rahim ◽  
L Musa ◽  
Abdul Hakim Masa

Abstract In this study, recycled ethylene propylene diene monomer (EPDM-r) were blended with polypropylene (PP) by compounding via heated two roll mills with the various ratio of EPDM-r. Certain blends were included with PP-g-MA as a compatibilizer. In tensile tests, the increasing of EPDM-r content in blends resulted in the reduction of tensile strength and Young’s Modulus but increased elongation at break. Furthermore, the presence of compatibilizer in blends enhanced the tensile properties. It was found all the samples with compatibilizer performs better results in tensile strength, Young’s Modulus, and elongation at break than samples without compatibilizer. On the other hand, the aging affected were studied on compatibilized and uncompatibilized blends. It was found that aging affects the samples by decreasing the tensile strength, Young’s Modulus, and elongation at break. The crosslink density had been found higher in the blends with high EPDM-r content as the EPDM-r had the ability to swell. The morphological study related to the structure with the tensile properties. It was confirmed that the presence of a compatibilizer increased the compatibility between EPDM-r and PP matrix.

2012 ◽  
Vol 488-489 ◽  
pp. 945-949 ◽  
Author(s):  
Saowaroj Chuayjuljit ◽  
Thatisorn Karnjanamayul

In this study, tensile properties, thermal stability and morphology of polypropylene/ethylene propylene diene rubber/wollastonite (PP/EPDM/wollastonite) thermoplastic elastomer composites were tested and evaluated as a function of their compositions in comparison with PP/EPDM blends and native PP. PP was melt mixed with two loadings of EPDM (20 and 30% (w/w)) and for the composites each of these with three loadings of wollastonite (10, 20 and 30 parts by weight per hundred of the PP/EPDM resin) on a twin screw extruder and then injection molded. Both PP/EPDM blends provided a higher elongation at break but a lower tensile strength and Young’s modulus as compared with those of the neat PP. However, the addition of wollastonite microparticles (particle size of 1200 mesh) into the blends increased the Young’s modulus in a dose-dependent manner with increasing wollastonite loadings, whilst the tensile strength and elongation at break were decreased. Moreover, the thermal stability was improved by the presence of either EPDM or wollastonite in the PP matrix.


2015 ◽  
Vol 1107 ◽  
pp. 125-130 ◽  
Author(s):  
Muhammad Safwan Hamzah ◽  
M. Mariatti ◽  
M. Kamarol

In this article, we report three nanofillers filled polymer composite systems. Nanofillers composed of alumina, titania and organoclay were embedded separately in 50% polypropylene (PP) and 50% ethylene propylene diene monomer (EPDM) blends. The nanocomposites were prepared using an internal mixer and were molded using a compression mold to form test samples. Effect of filler loading (2, 4, 6, and 8 vol.%) on the tensile properties and melt flow index (MFI) were determined. The mechanical properties of alumina are the highest compared to titania and organoclay. Alumina and organoclay shows an ascending trend in tensile strength with the increase of nanofiller loading. In contrast, the increment of titania filler loading reduces the tensile strength of the nanocomposites. The Young's modulus of the nanocomposites increases with the addition of filler loading. Elongation at break of the nanocomposites shows a descending trend with the addition of filler loading. The addition of 8 vol. % titania and organoclay slightly changes the MFI of the PP/EPDM nanocomposites whereas the addition of 8 vol. % alumina drastically decreased the MFI values. Further addition of nanofillers up to 8 vol. % decreases the MFI values of the PP/EPDM nanocomposites.


2012 ◽  
Vol 3 (1) ◽  
pp. 13-26
Author(s):  
Myrtha Karina ◽  
Lucia Indrarti ◽  
Rike Yudianti ◽  
Indriyati

The effect of castor oil on the physical and mechanical properties of bacterial cellulose is described. Bacterial cellulose (BC) was impregnated with 0.5–2% (w/v) castor oil (CO) in acetone–water, providing BCCO films. Scanning electron micrographs revealed that the castor oil penetrated the pores of the bacterial cellulose, resulting in a smoother morphology and enhanced hydrophilicity. Castor oil caused a slight change in crystallinity indices and resulted in reduced tensile strength and Young's modulus but increased elongation at break. A significant reduction in tensile strength and Young's modulus was achieved in BCCO films with 2% castor oil, and there was an improvement in elongation at break and hydrophilicity. Impregnation with castor oil, a biodegradable and safe plasticiser, resulted in less rigid and more ductile composites.


2018 ◽  
Vol 33 (3) ◽  
pp. 289-304 ◽  
Author(s):  
Kuhananthan Nanthakumar ◽  
Chan Ming Yeng ◽  
Koay Seong Chun

This research covers the preparation of poly(lactic acid) (PLA)/sugarcane leaves fibre (SLF) biofilms via a solvent-casting method. The results showed that the tensile strength and Young’s modulus of PLA/SLF biofilms increased with the increasing of SLF content. Nevertheless, the elongation at break showed an opposite trend as compared to tensile strength and Young’s modulus of biofilms. Moreover, water absorption properties of PLA/SLF biofilms increased with the increasing of SLF content. In contrast, the tensile strength and Young’s modulus of biofilms were enhanced after bleaching treatment with hydrogen peroxide on SLF, but the elongation at break and water absorption properties of bleached biofilms were reduced due to the improvement of filler–matrix adhesion in biofilms. The tensile and water properties were further discussed using B-factor and Fick’s law, respectively. Furthermore, the functional groups of unbleached and bleached SLF were characterized by Fourier transform infrared analysis.


2018 ◽  
Vol 917 ◽  
pp. 52-56
Author(s):  
Jirapornchai Suksaeree

Recently, Thai herbs are widely used as medicine to treat some illnesses. Zingiber cassumunar Roxb., known by the Thai name “Plai”, is a popular anti-inflammatory, antispasmodic herbal body and muscle treatment. This research aimed to prepare herbal patches that incorporated the 3 g of crude Z. cassumunar oil. The herbal patches made from different polymer blends were 2 g of 3.5%w/v chitosan and 5 g of 20%w/v hydroxypropyl methylcellulose (HPMC), or 2 g of 3.5%w/v chitosan and 5 g of 20%w/v polyvinyl alcohol (PVA) using 2 g of glycerin as a plasticizer. They were prepared by mixing all ingredients in a beaker and produced by solvent casting method in hot air oven at 70±2oC. The completed herbal patches were evaluated for their mechanical properties including Young’s modulus, ultimate tensile strength, elongation at break, T-peel strength, and tack adhesion. The thickness of blank and herbal patches was 0.263-0.282 mm and 0.269-0.275 mm, respectively. Young’s modulus, ultimate tensile strength, elongation at break, T-peel strength, and tack adhesion were 104.73-142.71 MPa, 87.92-93.28 MPa, 154.39-174.98 %, 3.43-4.88 MPa, and 5.29-7.02 MPa, respectively, for blank patches, and 116.83-147.28 MPa, 89.49-100.47 MPa, 133.78-159.27 %, 2.01-3.98 MPa, and 4.03-5.19 MPa, respectively, for herbal patches. We prepared herbal blended patches made from chitosan/PVA or chitosan/HPMC polymer matrix blends incorporating the crude Z. cassumunar oil. They had good mechanical properties that might be developed for herbal medicinal application.


2019 ◽  
Vol 131 ◽  
pp. 01052
Author(s):  
Yu Wang

Nanocellulose fibres can be hand-spun from different intermediate states, such as nanocellulose paper and filter cake, which are made from the BC suspension as well as wet pellicle (WP) and dry pellicle (DP) from BC pellicles. In this study, it can be concluded that increasing the hanging weight can increase the Young’s modulus and the tensile strength of fibres. Nanofibres produced from BC pellicles as raw material have better performance than those made from BC suspension. The best properties obtained from the fibres produced from wet pellicles and suspended to a 100g hanging weight upon drying are Young’s modulus (33.8 GPa), tensile strength (610 MPa) and elongation at break (3.6%).


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Toan Duy Nguyen ◽  
Chinh Thuy Nguyen ◽  
Van Thanh Thi Tran ◽  
Giang Vu Nguyen ◽  
Hai Viet Le ◽  
...  

Plasticized polyvinyl chloride (PVC) was fabricated using epoxidized soybean oil (ESBO) as a secondary bioplasticizer with dioctyl phthalate (DOP). The PVC/MFA/CB composites were prepared by melt mixing of the plasticized PVC with modified fly ash (MFA), carbon black N330 (CB), and polychloroprene (CR) in a Haake Rheomix mixer using a rotation speed of 50 rpm at 175°C for 6 min and then compressed by Toyoseiki pressure machine under 15 MPa. The effect of ESBO content on morphology, melt viscosity, tensile properties, and flame retardancy of PVC/MFA/CB composites was investigated. The obtained results showed that the incorporation of ESBO has significantly enhanced the processing ability, Young’s modulus, tensile strength, and elongation at break of the PVC/MFA/CB composites. The torque of PVC/MFA/CB composites was increased to approximately 12% when 50 wt% of DOP was replaced by ESBO. When ESBO was 20 wt% in comparison with DOP weight, the elongation at break, tensile strength, and Young’s modulus of the composites were increased to 48%, 24%, and 4.5%, respectively. Correspondingly, thermogravimetric analysis results confirmed that ESBO had improved the thermostability of the PVC composites. The ESBO have potential as a secondary bioplasticizer replacement material for DOP owing to their better thermomechanical stability.


2019 ◽  
Vol 947 ◽  
pp. 77-81
Author(s):  
Natsuda Palawat ◽  
Phasawat Chaiwutthinan ◽  
Sarintorn Limpanart ◽  
Amnouy Larpkasemsuk ◽  
Anyaporn Boonmahitthisud

The aim of this study is to improve the physical properties of poly(lactic acid) (PLA) by incorporating thermoplastic polyurethane (TPU), organo-montmorillonite (OMMT) and/or nanosilica (nSiO2). PLA was first melt mixed with five loadings of TPU (10–50 wt%) on a twin-screw extruder, followed by injection molding. The addition of TPU was found to increase the impact strength, elongation at break and thermal stability of the blends, but decrease the tensile strength and Young’s modulus. Based on a better combination of the mechanical properties, the 70/30 (w/w) PLA/TPU blend was selected for preparing both single and hybrid nanocomposites with a fix total nanofiller content of 5 parts per hundred of resin (phr), and the OMMT/nSiO2 weight ratios were 5/0, 2/3, 3/2 and 0/5 (phr/phr). The Young’s modulus and thermal stability of the nanocomposites were all higher than those of the neat 70/30 PLA/TPU blend, but at the expense of reducing the tensile strength, elongation at break and impact strength. However, all the nanocomposites exhibited higher impact strength and Young’s modulus than the neat PLA. Among the four nanocomposites, a single-filler nanocomposite containing 5 phr nSiO2 exhibited the highest impact strength and thermal stability, indicating that there was no synergistic effect of the two nanofillers on the investigated physical properties. However, the hybrid nanocomposite containing 2/3 (phr/phr) OMMT/nSiO2 possessed a compromise in the tensile properties.


2019 ◽  
Vol 7 (3) ◽  
pp. 457
Author(s):  
Farida Unggul Situmorang ◽  
Amna Hartiati ◽  
Bambang Admadi Harsojuwono

This study aims to know the effect of the concetration of taro tuber starch and plasticizer type and their interactions on the characteristics of bioplastics, and to determine the concentration of taro tuber starch and plasticizer type which produces bioplastics with the best characteristics. The research used factorial randomized block design. The first factor is the concentration of taro tuber starch consisting of 3 levels 5, 6 and 7% (w/w). The second factor is the plasticizer type consisting of 3 levels that is glycerol, sorbytol and mixture plasticizer glycerol and sorbitol (1:1). Each treatment are grouped into two time-based of making bioplastics so there are 18 experimental units. Variabels observed tensile strength, elongation at break, Young’s modulus, swelling, biodegradation and FTIR. The data obtained were analyzed of variant and test Tukey’s. The result showed that the concentration of taro tuber starch and type of plasticizer had a very significant effect on tensile strength, elongation at break, Young’s Modulus and swelling but the type of plasticizer had no significant effect on biodegradation. Interaction between treatments has a very significant effect on Young’s Modulus and swelling, a significant effect on tensile strength and no significant effect on elongation at break and biodegradation. The concentration of starch 6% with plasticizer glycerol produces the best characteristics of bioplastics with tensile strength 2.270 0.057 MPa, elongation at break 14.5 0.01 %, Young’s modulus 15.683 1.155 MPa, swelling 29.88 1.02 % and biodegradability 6-7 days. FTIR analysis proved the existence of hydroxyl (O-H), carbonyl (C=O), C=C aromatic, carboxyl (C-O), C-H aromatic, and hydrocarbons –(CH2)n in the bioplastic. Keywords: Bioplastics, concentration of taro tuber starch, glycerol, sorbytol  


Author(s):  
Joselyn Cardenas ◽  
Calvin M. Stewart

In the advancement of Additive Manufacturing (AM) technologies, 3D desktop printers have become an accessible solution to address the current manufacturing practices for most industries and the general public. This study explores the effect default build parameters have on the tensile properties of additive manufactured parts by comparing the Young’s Modulus and tensile strength of polylactic acid (PLA) in the elastic region before and after the AM process through experiments and numerical simulations. The build parameters are specified via MakerBot Desktop — the file preparation software for the MakerBot Replicator 3D printer used to create the specimens tested herein. This work presents the tensile mechanical properties for specimens built using low infill rate, low layer resolution, and standard build speed and extrusion temperature to recreate the worst possible part quality attainable using MakerBot 3D Desktop printers. Using these build parameters results in a part with a hollow honeycomb interior structure, and due to its heterogeneous cross sectional area, experimental stress-strain curves do not accurately represent its physical response to tensile loading. Therefore in this case, an experimental-numerical study of the 3D printed specimens is performed, using the load-displacement experimental data acquired from tensile tests to calibrate the ANSYS Structural Mechanics simulations. The goal is to optimize the material properties in our simulation such that the equivalent strain magnitude matches the experiments. This is an approach to determine the experimental Young’s modulus of PLA additive manufactured parts where the AM process, heterogeneous structure, and size greatly influence the part strength. This is completed by studying the worst part quality possible first to better understand this effect. Tensile tests are performed using an ADMET 5603 Universal Test Machine (UTM) synched with a Correlated Solutions 3D Digital Image Correlation (DIC) system. A fine heterogeneous speckle pattern is sprayed on the specimens and used by the DIC system to obtain surface contours of deformation. This data is compared to the displacement fields in the finite element analysis (FEA) simulation of the specimen. When compared to the pre-manufacturing PLA, additive manufactured parts exposed that the post-processed stiffness of the material is increased when tested under this loading condition. The Poisson’s ratio for printed PLA was also noted to decrease when compared to pre-manufactured PLA, due to the larger longitudinal deformation compared to the transverse. Specimens failed by brittle fracture across the hex pattern, showing limited deformation and failing short after. The failure location based on the influence interior geometry has on failure showed that specimens failed by brittle fracture across the hex pattern, initiating fracture in the same region of all specimens.


Sign in / Sign up

Export Citation Format

Share Document