scholarly journals Digital model of the oil spill process on the Earth’s surface

2021 ◽  
Vol 2094 (5) ◽  
pp. 052022
Author(s):  
Georgy Dorrer ◽  
Sergey Yarovoy

Abstract The Fourth Industrial Revolution currently taking place has an impact on human interaction with the environment, which must move to a new level, ensuring the harmonization of the needs of mankind. Cyber-physical systems can play an important role in the environmental sphere. The possibility of creating a digital model of the process of oil spills with their penetration into the ground and the adjacent water body, which causes significant damage to the environment and the economy, especially in the northern regions, is being considered. An approach to solving this problem is proposed, based on the representation of the soil contamination area in the form of a set of flat layers, each of which is calculated by the method of movable grids.

Author(s):  
Georgy Alekseevich Dorrer ◽  
◽  
Sergey Victorovich Yarovoy ◽  
Anton Yurievich Komarov ◽  
◽  
...  

The possibility of creating a digital model of the process of oil spills with their penetration into the ground and the adjacent water body, which causes significant damage to the environment and the economy, especially in the northern regions, is being considered. An approach to solving this problem is proposed, based on the representation of the soil contamination area in the form of a set of flat layers, each of which is calculated by the method of moving grids.


Author(s):  
Petar Radanliev ◽  
David De Roure ◽  
Jason R.C. Nurse ◽  
Razvan Nicolescu ◽  
Michael Huth ◽  
...  

The world is currently experiencing the fourth industrial revolution driven by the newest wave of digitisation in the manufacturing sector. The term Industry 4.0 (I4.0) represents at the same time: a paradigm shift in industrial production, a generic designation for sets of strategic initiatives to boost national industries, a technical term to relate to new emerging business assets, processes and services, and a brand to mark a very particular historical and social period. I4.0 is also referred to as Industrie 4.0 the New Industrial France, the Industrial Internet, the Fourth Industrial Revolution and the digital economy. These terms are used interchangeably in this text. The aim of this article is to discuss major developments in this space in relation to the integration of new developments of IoT and cyber physical systems in the digital economy, to better understand cyber risks and economic value and risk impact. The objective of the paper is to map the current evolution and its associated cyber risks for the digital economy sector and to discuss the future developments in the Industrial Internet of Things and Industry 4.0.


2021 ◽  
Vol 346 ◽  
pp. 03050
Author(s):  
Mariya Ostapenko ◽  
Vladlena Nazarova

The fourth industrial revolution, associated with the introduction of robotics, cyber-physical systems, artificial intelligence, neural networks, affects all spheres of human life. There is a need for specialists with the appropriate skills. The article discusses the elements of Industry 4.0: Internet of Things, robotization, PLM system. The impact of digitalization on the educational sector is also considered.


2020 ◽  
pp. 62-73
Author(s):  
Roman Mikhailovich Gordeev

The article conceptualises the stages that humanity has passed on the way of technological development: the transition from agricultural production to the fi rst steam engines, from mastering the power of steam to electricity, from electricity to digital technologies; and, fi nally, the transition that we are witnessing: from digital technologies to the creation of complex interconnected cyber-physical systems based on autonomous self-learning machines.


Author(s):  
Marco Neves

Today we are living in the cusp of a new industrial revolution that differs from all the previous ones. It´s been coined as the Fourth Industrial Revolution (FIR) at the 2011 Hannover Fair. The first industrial revolution powered mainly by the steam engine, the second one by the advent of electrification, mass production and division of labor and the third one by the upcoming of internet, computers, networks and digital machines. What differs the FIR from all the others is that this one is on the edge of artificial intelligence, digital ubiquity, cyber-physical systems and even on the way to “Singularity”: where for the first time machines acquired capabilities that we only consider possible in humans. This means that we are fencing tremendous changes in what concerns to all the aspects of life, i.e. social, economic, cultural and, collaterally, in labor market.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Róbert Csalódi ◽  
Zoltán Süle ◽  
Szilárd Jaskó ◽  
Tibor Holczinger ◽  
János Abonyi

The Fourth Industrial Revolution means the digital transformation of production systems. Cyber-physical systems allow for the horizontal and vertical integration of these production systems as well as the exploitation of the benefits via optimization tools. This article reviews the impact of Industry 4.0 solutions concerning optimization tasks and optimization algorithms, in addition to the identification of the new R&D directions driven by new application options. The basic organizing principle of this overview of the literature is to explore the requirements of optimization tasks, which are needed to perform horizontal and vertical integration. This systematic review presents content from 900 articles on Industry 4.0 and optimization as well as 388 articles on Industry 4.0 and scheduling. It is our hope that this work can serve as a starting point for researchers and developers in the field.


Economies ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 39 ◽  
Author(s):  
Majid Ziaei Nafchi ◽  
Hana Mohelská

Industry 4.0 is the essence of the fourth Industrial revolution and is happening right now in manufacturing by using cyber-physical systems (CPS) to reach high levels of automation. Industry 4.0 is especially beneficial in highly developed countries in terms of competitive advantage, but causes unemployment because of high levels of automation. The aim of this paper is to find out if the impact of adopting Industry 4.0 on the labor markets of Iran and Japan would be the same, and to make analysis to find out whether this change is possible for Iran and Japan with their current infrastructures, economy, and policies. With the present situation of Iran in science, technology, and economy, it will be years before Iran could, or better say should, implement Industry 4.0. Japan is able to adopt Industry 4.0 much earlier than Iran and with less challenges ahead; this does not mean that the Japanese labor market would not be affected by this change but it means that those effects would not cause as many difficulties as they would for Iran.


2018 ◽  
Vol 15 (4) ◽  
pp. 528-534
Author(s):  
Adriano Pereira ◽  
Eugênio De Oliveira Simonetto ◽  
Goran Putnik ◽  
Helio Cristiano Gomes Alves de Castro

Technological evolutions lead to changes in production processes; the Fourth Industrial Revolution has been called Industry 4.0, as it integrates Cyber-Physical Systems and the Internet of Things into supply chains. Large complex networks are the core structure of Industry 4.0: any node in a network can demand a task, which can be answered by one node or a set of them, collaboratively, when they are connected. In this paper, the aim is to verify how (i) network's connectivity (average degree) and (ii) the number of levels covered in nodes search impacts the total of production tasks completely performed in the network. To achieve the goal of this paper, two hypotheses were formulated and tested in a computer simulation environment developed based on a modeling and simulation study. Results showed that the higher the network's average degree is (their nodes are more connected), the greater are the number of tasks performed; in addition, generally, the greater are the levels defined in the search for nodes, the more tasks are completely executed. This paper's main limitations are related to the simulation process, which led to a simplification of production process. The results found can be applied in several Industry 4.0 networks, such as additive manufacturing and collaborative networks, and this paper is original due to the use of simulation to test this kind of hypotheses in an Industry 4.0 production network.


2020 ◽  
Vol 17 (3) ◽  
pp. 172988142091031
Author(s):  
Rafael Arrais ◽  
Paulo Ribeiro ◽  
Henrique Domingos ◽  
Germano Veiga

Motivated by the Fourth Industrial Revolution, there is an ever-increasing need to integrated Cyber-Physical Systems in industrial production environments. To address the demand for flexible robotics in contemporary industrial environments and the necessity to integrate robots and automation equipment in an efficient manner, an effective, bidirectional, reliable and structured data interchange mechanism is required. As an answer to these requirements, this article presents ROBIN, an open-source middleware for achieving interoperability between the Robot Operating System and CODESYS, a softPLC that can run on embedded devices and that supports a variety of fieldbuses and industrial network protocols. The referred middleware was successfully applied and tested in various industrial applications such as battery management systems, motion, robotic manipulator and safety hardware control, and horizontal integration between a mobile manipulator and a conveyor system.


Information ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 343 ◽  
Author(s):  
Nelson H. Carreras Guzman ◽  
Adam Gergo Mezovari

From autonomous vehicles to robotics and machinery, organizations are developing autonomous transportation systems in various domains. Strategic incentives point towards a fourth industrial revolution of cyber–physical systems with higher levels of automation and connectivity throughout the Internet of Things (IoT) that interact with the physical world. In the construction and mining sectors, these developments are still at their infancy, and practitioners are interested in autonomous solutions to enhance efficiency and reliability. This paper illustrates the enhanced design of a driverless bulldozer prototype using IoT-based solutions for the remote control and navigation tracking of the mobile machinery. We illustrate the integration of a cloud application, communication protocols and a wireless communication network to control a small-scale bulldozer from a remote workstation. Furthermore, we explain a new tracking functionality of work completion using maps and georeferenced indicators available via a user interface. Finally, we provide a preliminary safety and security risk assessment of the system prototype and propose guidance for application in real-scale machinery.


Sign in / Sign up

Export Citation Format

Share Document