scholarly journals Numerical analysis of the flow in the model of a venous valve: normal and surgical corrected

2021 ◽  
Vol 2103 (1) ◽  
pp. 012207
Author(s):  
Y A Gataulin ◽  
A D Yukhnev ◽  
D A Rosukhovskiy

Abstract The present study aimed to modeling of surgically corrected venous valve. The Arbitrary Lagrangian-Eulerian (ALE) method was used to model the blood–leaflet interactions. The contact process between leaflets was evaluated using a frictionless contact method. The results of the numerical study of the flow in the venous valve after extravasal correction was compared with the results for the normal venous valve.

Author(s):  
Yoann Jus ◽  
Elisabeth Longatte ◽  
Jean-Camille Chassaing ◽  
Pierre Sagaut

The present work focusses on the numerical study of Vortex-Induced Vibrations (VIV) of an elastically mounted cylinder in a cross flow at moderate Reynolds numbers. Low mass-damping experimental studies show that the dynamic behavior of the cylinder exhibits a three-branch response model, depending on the range of the reduced velocity. However, few numerical simulations deal with accurate computations of the VIV amplitudes at the lock-in upper branch of the bifurcation diagram. In this work, the dynamic response of the cylinder is investigated by means of three-dimensional Large Eddy Simulation (LES). An Arbitrary Lagrangian Eulerian framework is employed to account for fluid solid interface boundary motion and grid deformation. Numerous numerical simulations are performed at a Reynolds number of 3900 for both no damping and low-mass damping ratio and various reduced velocities. A detailed physical analysis is conducted to show how the present methodology is able to capture the different VIV responses.


Author(s):  
Sang-Won Kim ◽  
Youn-Jea Kim

An axial-flow pump has a relatively high discharge flow rate and specific speed at a relatively low head and it consists of an inlet guide vane, impeller, and outlet guide vane. The interaction of the flow through the inlet guide vane, impeller, and outlet guide vane of the axial-flow pump has a significant effect on its performance. Of those components, the guide vanes especially can improve the head and efficiency of the pump by transforming the kinetic energy of the rotating flow, which has a tangential velocity component, into pressure energy. Accordingly, the geometric configurations of the guide vanes such as blade thickness and angle are crucial design factors for determining the performance of the axial-flow pump. As the reliability of Computational Fluid Dynamics (CFD) has been elevated together with the advance in computer technology, numerical analysis using CFD has recently become an alternative to empirical experiment due to its high reliability to measure the flow field. Thus, in this study, 1,200mm axial-flow pump having an inlet guide vane and impeller with 4 blades and an outlet guide vane with 6 blades was numerically investigated. Numerical study was conducted using the commercial CFD code, ANSYS CFX ver. 16.1, in order to elucidate the effect of the thickness and angle of the guide vanes on the performance of 1,200mm axial-flow pump. The stage condition, which averages the fluxes between interfaces and is accordingly appropriate for the evaluation of pump performance, was adopted as the interface condition between the guide vanes and the impeller. The rotational periodicity condition was used in order to enable a simplified geometry to be used since the guide vanes feature multiple identical regions. The shear stress transport (SST) k-ω model, predicting the turbulence within the flow in good agreement, was also employed in the CFD calculation. With regard to the numerical simulation results, the characteristics of the pressure distribution were discussed in detail. The pump performance, which will determine how well an axial-flow pump will work in terms of its efficiency and head, was also discussed in detail, leading to the conclusion on the optimal blade thickness and angle for the improvement of the performance. In addition, the total pressure loss coefficient was considered in order to investigate the loss within the flow paths depending on the thickness and angle variations. The results presented in this study may give guidelines to the numerical analysis of the axial-flow pump and the investigation of the performance for further optimal design of the axial-flow pump.


2011 ◽  
Vol 462-463 ◽  
pp. 774-779
Author(s):  
Hu Si ◽  
Xiao Hong Li ◽  
Yan Ming Xie

The high pressure waterjet is widely applied for mine industry, mechanical manufacture, environmental engineering, and medicine field due to its particular characteristic. Recently, the application of high pressure waterjet for gas drainage in mine has been receiving increasing attention with the development of exploitative technology. The micro-damage mechanism of coal under high pressure water jet is key to drain gas effectively. Based on damage mechanics and rock dynamics, the paper analyzed the micro-structure deformation and damage of rock and the impulsive effect under high pressure water jet and developed the dynamic model. Further, on the assumption of that rock was homogeneous and isotropic, a computational model was established based on the Arbitrary Lagrangian Eulerian (ALE) fluid-solid coupling penalty function method. The rock damage under high pressure water jet was simulated by the dynamic contact method. The results showed that the damage and breakage of ruck was mainly attributed to impacting effect and was characterized by local effect, and the evolvement of rock breakage went through three stages and the figure of rock breakage trended a funnel. On the whole, numerical results agreed with experimental results.


Micromachines ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 37 ◽  
Author(s):  
Christopher Sobecki ◽  
Jie Zhang ◽  
Cheng Wang

We numerically investigated the dynamics of a paramagnetic elliptical particle immersed in a low Reynolds number Poiseuille flow in a curved channel and under a uniform magnetic field by direct numerical simulation. A finite element method, based on an arbitrary Lagrangian-Eulerian approach, analyzed how the channel geometry, the strength and direction of the magnetic field, and the particle shape affected the rotation and radial migration of the particle. The net radial migration of the particle was analyzed after executing a π rotation and at the exit of the curved channel with and without a magnetic field. In the absence of a magnetic field, the rotation is symmetric, but the particle-wall distance remains the same. When a magnetic field is applied, the rotation of symmetry is broken, and the particle-wall distance increases as the magnetic field strength increases. The causation of the radial migration is due to the magnetic angular velocity caused by the magnetic torque that constantly changes directions during particle transportation. This research provides a method of magnetically manipulating non-spherical particles on lab-on-a-chip devices for industrial and biological applications.


2020 ◽  
Vol 8 (1) ◽  
pp. 47 ◽  
Author(s):  
Kourosh Koushan ◽  
Vladimir Krasilnikov ◽  
Marco Nataletti ◽  
Lucia Sileo ◽  
Silas Spence

Energy saving within shipping is gaining more attention due to environmental awareness, financial incentives, and, most importantly, new regional and international rules, which limit the acceptable emission from the ships considerably. One of the measures is installation of energy saving devices (ESD). One type of such a device, known as pre-swirl stator (PSS), consists of a number (usually 3 to 5) of fins, which are mounted right in front of the propeller. By modifying the inflow and swirl into the propeller, the fins of a PSS have the possibility to increase the total propulsion efficiency. However, at the same time, they may introduce additional resistance either due to changes in pressure distribution over the aft ship or due to its own resistance of fins. In this paper, the authors present experimental and numerical investigation of a PSS for a chemical tanker. Numerical analysis of the vessel with and without PSS is performed in the model and full scale. Model testing is performed with and without PSS to verify the power savings predicted numerically. Among other quantities, 3D wake field behind the hull is densely measured at different planes, starting from the PSS plane to the rudder stock plane. 3D wake measurements are also conducted with a running propeller. The measurements show considerable improvement in the performance of the vessel fitted with PSS. On the numerical side, analyses show that scale effect plays an important role in the ESD performance. Investigation of the scale effect on the vessel equipped with an ESD provides new insight for the community, which is investing more into the development of energy saving devices, and it offers valuable information for the elaboration of scaling procedures for such vessels.


2020 ◽  
Vol 897 ◽  
pp. 73-77
Author(s):  
Toan Minh Le ◽  
Tinh Quoc Bui ◽  
Jintara Lawongkerd ◽  
Suchart Limkatanyu ◽  
Jaroon Rungamornrat

In this paper, a frictionless contact of a rigid flat-ended indentor on a linear elastic half plane is investigated by taking the influence of surface and couple stresses into account. The surface elasticity and couple stress theories are utilized to form a mathematical model. The Green’s function method together with the equilibrium condition of the indentor is employed to formulate the key equations governing the contact pressure. A collocation technique and a set of available fundamental solutions of a half plane under the surface loading are adopted to determine the unknown contact pressure. Results from a numerical study reveal that the presence of both surface and couple stresses significantly alters the distribution of the contact pressure from that predicted by the classical linear elasticity, and the size-dependent characteristics of predicted solutions are obviously observed when the contact width is comparable to the internal length scales of the surface and bulk materials.


2020 ◽  
Vol 15 ◽  
pp. 155892502091561
Author(s):  
Linbo Yan ◽  
Zhengkai Sun ◽  
Han Cheng

In order to study the influence of rainstorm on parachute dropping, the smoothed particle hydrodynamics/arbitrary Lagrangian–Eulerian coupling method is proposed. Finite elements are used to describe the continuous material such as fabric and air flow field, and the smoothed particle hydrodynamics particles are used to describe the discrete raindrops. The coupling between different fluid and structure is realized by penalty function. In order to distinguish the most influential factor of rainstorm environment on parachute, the effects of raindrop field and wind field in rainstorm are studied, respectively. It could be found that the raindrop fields with different droplet sizes have little effect on the parachute’s shape, opening shock, and performance according to the comparative analysis, while the vertical wind field has a great influence on parachute’s deceleration performance. The wind field, not the raindrop field, is the most important factor affecting the parachute’s deceleration performance. The method and conclusions in this article could provide some references for parachute design.


2014 ◽  
Vol 136 (9) ◽  
Author(s):  
Mike Probyn ◽  
Ben Thornber ◽  
Dimitris Drikakis ◽  
David Youngs ◽  
Robin Williams

This paper presents an investigation into the use of a moving mesh algorithm for solving unsteady turbulent mixing problems. The growth of a shock induced mixing zone following reshock, using an initial setup comparable to that of existing experimental work, is used to evaluate the behavior of the numerical scheme for single-mode Richtmyer–Meshkov instability (SM-RMI). Subsequently the code is used to evaluate the growth rate for a range of different initial conditions. The initial growth rate for three-dimensional (3D) SM Richtmyer–Meshkov is also presented for a number of different initial conditions. This numerical study details the development of the mixing layer width both prior to and after reshock. The numerical scheme used includes an arbitrary Lagrangian–Eulerian grid motion which is successfully used to reduce the mesh size and computational time while retaining the accuracy of the simulation results. Varying initial conditions shows that the growth rate after reshock is independent of the initial conditions for a SM provided that the initial growth remains in the linear regime.


Sign in / Sign up

Export Citation Format

Share Document