scholarly journals Jet impingement cooling using fluidic oscillators: an experimental study

2021 ◽  
Vol 2116 (1) ◽  
pp. 012028
Author(s):  
Georges Saliba ◽  
Vincent Raimbault ◽  
Stéphane Colin ◽  
Ahmad Batikh ◽  
Stéphane Orieux ◽  
...  

Abstract A growing portion of the thermal load on board airplanes is due to densely packed electronic systems. This increased thermal load along with constraints on weight and volume have made simple and reliable cooling solutions an urgent need in the aerospace industry. There is a wealth of cooling solutions available in order to meet these demands, the simplest and most adaptable of which is probably jet impingement cooling. In this study, fluidic oscillators capable of producing pulsating jets were used to cool a heated surface and were then compared to equivalent steady jets. Although pulsating jets can be produced using a number of devices, fluidic oscillators offer the advantage of not having any moving parts. These oscillators are sustained by a self-induced internal flow instability and can function at different scales. Although the major part of this work is based on prototypes that produce jets with sub-millimetric widths, designs at one tenth that scale, i.e. with an exit slot width of 50 µm, are also presented. Reynolds numbers ranging from ReD = 3500 to 5250 and jet-to-plate spacing from 1D to 10D were studied (where D is the initial width of the jet). The Nusselt number distribution is found for each case and a comparison is made between the performance of equivalent steady and pulsating jets based on the average Nusselt number.

Author(s):  
Todd M. Bandhauer ◽  
David R. Hobby ◽  
Chris Jacobsen ◽  
Dave Sherrer

In a variety of electronic systems, cooling of various components imposes a significant challenge. A major aspect that inhibits the performance of many cooling solutions is the thermal resistance between the chip package and the cooling structure. Due to its low thermal conductivity, the thermal interface material (TIM) layer imposes a significant thermal resistance on the chip to cooling fluid thermal path. Advanced cooling methods that bypass the TIM have shown great potential in research and some specialty applications, yet have not been adopted widely by industry due to challenges associated with practical implementation and economic constraints. One advanced cooling method that can bypass the TIM is jet impingement. The impingement cooling device investigated in the current study is external to the integrated circuit (IC) package and could be easily retrofitted onto any existing microchip, similar to a standard heatsink. Jet impingement cooling has proven effective in previous studies. However, it has been shown that jet-to-jet interference severely degrades thermal performance of an impinging jet array. The present research addresses this challenge by utilizing a flow path geometry that allows for withdrawal of the impinging fluid immediately adjacent to each jet in the array. In this study, a jet impingement cooling solution for high-performance ICs was developed and tested. The cooling device was fabricated using modern advanced manufacturing techniques and consisted of an array of micro-scale impinging jets. A second array of fluid return paths was overlain across the jet array to allow for direct fluid extraction in the immediate vicinity of each jet, and fluid return passages were oriented in parallel to the impinging jets. The following key geometric parameters were utilized in the device: jet diameter (D = 300μm), distance from jet to impinging surface (H/D = 2.5), spacing between jets (S/D = 8), spacing between fluid returns (Sr/D = 8), diameter of fluid returns (Dr/D = 5). The device was mounted to a 2cm × 2cm uniformly heated surface which produced up to 165W and the resulting fluid-to-surface temperature difference was measured at a variety of flow rates. For this study, the device was tested using single-phase water. Jet Reynolds number ranged from 300–1500 and an average heat transfer coefficient of 13,100 W m−2 K−1 was achieved at a Reynolds number of only Red = 305.


Author(s):  
Qiang Li ◽  
Yimin Xuan ◽  
Feng Yu ◽  
Junjie Tan

An experimental investigation was performed to study the heat transfer and flow features of Cu-water nanofluids (Cu particles with 26 nm diameter) in a submerged jet impingement cooling system. Three particular nozzle-to-heated surface distances (2, 4 and 6 mm) and four particle volume fractions (1.5%, 2.0%, 2.5% and 3.0%) are involved in the experiment. The experimental results reveal that the suspended nanoparticles increase the heat transfer performance of the base liquid in the jet impingement cooling system. Within the range of experimental parameters considered, it has been found that highest surface heat transfer coefficients can be achieved using a nozzle-to-surface distance of 4 mm and the nanofluid with 3.0% particle volume fraction. In addition, the experiments show that the system pressure drop of the dilute nanofluids is almost equal to that of water under the same entrance velocity.


Author(s):  
Anna A. Pavlova ◽  
Michael Amitay

Efficiency of synthetic jet impingement cooling and the mechanisms of heat removal from a constant heat flux surface were investigated experimentally. The effects of jet’s formation frequency and Reynolds number at different nozzle-to-surface distances were investigated and compared to steady jet cooling. It was found that synthetic jets are up to three times more effective than steady jets at the same Reynolds number. For smaller distances, high formation frequency (f = 1200 Hz) synthetic jets remove heat better than low frequency (f = 420 Hz) jets, whereas low frequency jets are more effective at larger distances, with an overlapping region. Using PIV, it was shown that at small distances between the synthetic jet and the heated surface, the higher formation frequency jet is associated with accumulation of vortices before they impinge on the surface. For the lower frequency jet, the wavelength between coherent structures is so large that vortex rings impinge on the surface separately.


Author(s):  
Muhammad A. R. Sharif

Convective heat transfer from a heated flat surface due to twin oblique laminar slot-jet impingement is investigated numerically. The flow domain is confined by an adiabatic surface parallel to the heated impingement surface. The twin slot jets are located on the confining surface. The flow and geometric parameters are the jet exit Reynolds number, distance between the two jets, distance between the jet exit and the impingement surface, and the inclination angle of the jet to the impingement surface. Numerical computations are done for various combinations of these parameters, and the results are presented in terms of the streamlines and isotherms in the flow domain, the distribution of the local Nusselt number along the heated surface, and the average Nusselt number at the heated surface. It is found that the peak and the average Nusselt number on the hot surface mildly decreases and the location of the stagnation point and the peak Nusselt number gradually moves downstream as the impingement angle is decreased from 90 deg. The heat transfer distribution from the impingement surface gets more uniform as the impingement angle is reduced to 45 deg and 30 deg at lager jet-to-plate distance (4–8) with a corresponding overall heat transfer reduction of about 40% compared to the normal impinging jet case. The specified jet exit velocity profile boundary condition has considerable effect on the predicted Nusselt number around the impingement location. Fully developed jet exit velocity profile correctly predicts the Nusselt number when compared to the experimental data.


Author(s):  
Fatih Selimefendigil ◽  
Hakan F. Öztop

Numerical study of jet impingement cooling of a corrugated surface with water–SiO2 nanofluid of different nanoparticle shapes was performed. The bottom wall is corrugated and kept at constant surface temperature, while the jet emerges from a rectangular slot with cold uniform temperature. The finite volume method is utilized to solve the governing equations. The effects of Reynolds number (between 100 and 500), corrugation amplitude (between 0 and 0.3), corrugation frequency (between 0 and 20), nanoparticle volume fraction (between 0 and 0.04), and nanoparticle shapes (spherical, blade, brick, and cylindrical) on the fluid flow and heat transfer characteristics were studied. Stagnation point and average Nusselt number enhance with Reynolds number and solid particle volume fraction for both flat and corrugated surface configurations. An optimal value for the corrugation amplitude and frequency was found to maximize the average heat transfer at the highest value of Reynolds number. Among various nanoparticle shapes, cylindrical ones perform the best heat transfer characteristics in terms of stagnation and average Nusselt number values. At the highest solid volume concentration of the nanoparticles, heat transfer values are higher for a corrugated surface when compared to a flat surface case.


2014 ◽  
Vol 695 ◽  
pp. 503-507
Author(s):  
Mohamad Nor Musa ◽  
Mohamed Izhar Mohamed Khalid

This study is to investigate the effectiveness of jet impingement cooling system on the turbine blade pressure side. The objective of this study is to determine the mass blowing rate referred to Reynolds number and the nozzle exit to surface distance which will produce the highest cooling effectiveness which will be shown as Nusselt number. A model of CF6-50 blade is made from mild steel and an experiment to study the jet impingement cooling effectiveness on the pressure side of turbine blade is conducted. The parameters that are included in the experiment are the Reynolds number, Re = 646, 1322, 1970 and 2637; and nozzle exit to surface distance, s/d = 4.0 cm, 8.0 cm and 12.0 cm. The results obtained are calculated and graphs for each experiment are made. The result shows that the jet impingement cooling effectiveness are the highest at where the nozzle is pointed and the cooling effectiveness decreases as it travels further away on the blade. The theory of jet impingement cooling is presented and the several factors that affect jet impingement cooling are also discussed.


2016 ◽  
Vol 819 ◽  
pp. 74-77
Author(s):  
Mohamad Nor Musa ◽  
Mohamad Faizal Fauzi

Jet impingement is one of cooling method used in order to achieve high heat transfer coefficient and widely used in industry applications such as drying of textile and film, glass and plastic sheets, cooling of electronic equipment, and heat treatment of metals. In this research, it focused on the effectiveness of the jet impingement cooling system on the convex surface based on mass blowing rate and nozzle exit to surface parameters. The scope of experiment research encompasses are convex surface made of aluminum alloy and diameter 12.5cm. For mass blowing rate parameters, it use ʋjet = 1.98m/s, 3.03m/s, 4.97m/s and 6.00m/s which has Reynolds number range from 643 until 1946. Nozzle exit to surface distance,s/d = 4.0, 8.0 and 12.0. In this experiment model, a major components that involved are a compressor, nozzle, convex surface model, K thermocouple and heater. For the result of the experiment, it is based on the data obtain through a heat transfer coefficient and Nusselt number which the plotted graph focus on the space spacing and Reynolds number parameters. For the graph Nusselt number versus s/d at stagnation point c/d=0, it shown that when the Reynolds number increase, the Nusselt number also increase. In term of effectiveness, the s/d=12.0 has a good effectiveness jet impingement cooling system. For the graph of Nusselt number versus Reynolds at stagnation point, c/d=0, as Reynolds number increase, the Nusselt number increase too. From this experiment the better cooling effect is at Reynolds number, Re=1946. Thus, it can conclude that, effectiveness for jet impingement cooling system on the convex surface occurs at the highest Reynolds number.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Abdel Rahman Salem ◽  
Farah Nazifa Nourin ◽  
Mohammed Abousabae ◽  
Ryoichi S. Amano

Abstract Internal cooling of gas turbine blades is performed with the combination of impingement cooling and serpentine channels. Besides gas turbine blades, the other turbine components such as turbine guide vanes, rotor disks, and combustor wall can be cooled using jet impingement cooling. This study is focused on jet impingement cooling, in order to optimize the coolant flow, and provide the maximum amount of cooling using the minimum amount of coolant. The study compares between different nozzle configurations (in-line and staggered), two different Reynold's numbers (1500 and 2000), and different stand-off distances (Z/D) both experimentally and numerically. The Z/D considered are 3, 5, and 8. In jet impingement cooling, the jet of fluid strikes perpendicular to the target surface to be cooled with high velocity to dissipate the heat. The target surface is heated up by a direct current (DC) power source. The experimental results are obtained by means of thermal image processing of the captured infra-red (IR) thermal images of the target surface. Computational fluid dynamics (CFD) analysis were employed to predict the complex heat transfer and flow phenomena, primarily the line-averaged and area-averaged Nusselt number and the cross-flow effects. In the current investigation, the flow is confined along with the nozzle plate and two parallel surfaces forming a bi-directional channel (bi-directional exit). The results show a comparison between heat transfer enhancement with in-line and staggered nozzle arrays. It is observed that the peaks of the line-averaged Nusselt number (Nu) become less as the stand-off distance (Z/D) increases. It is also observed that the fluctuations in the stagnation heat transfer are caused by the impingement of the primary vortices originating from the jet nozzle exit.


Author(s):  
Prashanta Dutta ◽  
Sandip Dutta ◽  
Jamil A. Khan

The effect of two in-line inclined baffles on the local heat transfer distributions and the associated frictional losses for a turbulent flow with uniform heating from the top surface of a rectangular channel is presented for different Reynolds numbers. A combination of two baffles of same overall size is used in this experiment. The upstream baffle remains attached to the top heated surface and the position, orientation, and geometry of the other is varied. These inclined perforated baffles combine the three major heat transfer augmentation techniques, i.e., jet impingement, internal flow swirls, and boundary layer separation. The results indicate that placement of two inclined baffles augment the overall heat transfer coefficient significantly along with the local heat transfer distribution. The pattern of local Nusselt number ratio strongly depends on the position, orientation, and geometry of the second plate. Like single inclined baffles and rib mounted channels, two baffles offer more pressure drop at higher flow Reynolds number.


Author(s):  
J. Javier Otero-Pérez ◽  
Richard D. Sandberg ◽  
Satoshi Mizukami ◽  
Koichi Tanimoto

Abstract This article shows the first parametric study on turbulent multi-jet impingement cooling flows using large-eddy simulations (LES). We focus on assessing the influence of the inter-jet distance and the cross-flow conditions on the heat transfer at the impingement wall. The LES setup is thoroughly validated with both experimental and direct numerical simulation data, showing an excellent agreement. The inter-jet distance effect on the heat transfer is studied comparing three different distances, where the full Nusselt number profile decreases in amplitude when the jet distance is increased. To evaluate the cross-flow effects, we prescribe both laminar and turbulent inflow conditions at different cross-flow magnitudes ranging between 20% and 40% of the impinging jet speed. Large cross-flow intensities cause a jet deflection which reduces the maxima in the Nusselt number distribution, and it increases the heat transfer in the areas of the wall less affected by the jet impingement. Adding realistic turbulent fluctuations to the inflow enhances the cross-flow effects on the heat transfer at the impingement wall.


Sign in / Sign up

Export Citation Format

Share Document