scholarly journals Enhancement of refrigeration system performance by refrigerant capillary injection in evaporator

2021 ◽  
Vol 2116 (1) ◽  
pp. 012102
Author(s):  
G El Achkar ◽  
B Liu ◽  
Y Liu ◽  
R Bennacer

Abstract In this paper, the enhancement of refrigeration system performance by refrigerant capillary injection in evaporator was experimentally investigated. An experimental bench was developed in order to compare the performance of a refrigeration system operating in conventional throttling and capillary injection modes. The temperature distribution in the evaporator and the compressor electrical consumption were determined, showing that in the capillary injection mode, the refrigeration system was more stable, its time to reach the steady state was reduced by 62.5 % and its COP was enhanced by 9 %.

2018 ◽  
Vol 154 ◽  
pp. 01044
Author(s):  
Eddy Erham ◽  
Markus ◽  
Ary Surjanto ◽  
Jaka Rukmana

A refrigeration system to maintain a desired compartment temperature usually uses a thermostat as an on-off controller. In fact, the thermostat has some disadvantages. The main problem of system which is related to the thermostat is the biggest energy consumption in household appliances. In this paper, to solve the problem was designed a new PID controller based on an Arduino Uno R3 with application to a household refrigerator. In this case, the Arduino Uno was uploaded with PID controller algorithm. Then, in implementation to determine controller parameter values was defined new criteria. After that, to obtain the best refrigeration system performance was also proposed new performance criteria based on experimental data. The experimental results showed that the proposed control system was able to maintain the desired temperature with steady-state error of about 0.044°C. In addition, in steady state the control system for the refrigerator was able to the energy saving of about 30% and it almost did not depend on cooling load quantity.


1979 ◽  
Vol 44 (3) ◽  
pp. 841-853 ◽  
Author(s):  
Zbyněk Ryšlavý ◽  
Petr Boček ◽  
Miroslav Deml ◽  
Jaroslav Janák

The problem of the longitudinal temperature distribution was solved and the bearing of the temperature profiles on the qualitative characteristics of the zones and on the interpretation of the record of the separation obtained from a universal detector was considered. Two approximative physical models were applied to the solution: in the first model, the temperature dependences of the mobilities are taken into account, the continuous character of the electric field intensity at the boundary being neglected; in the other model, the continuous character of the electric field intensity is allowed for. From a comparison of the two models it follows that in practice, the variations of the mobilities with the temperature are the principal factor affecting the shape of the temperature profiles, the assumption of a discontinuous jump of the electric field intensity at the boundary being a good approximation to the reality. It was deduced theoretically and verified experimentally that the longitudinal profiles can appreciably affect the longitudinal variation of the effective mobilities in the zone, with an infavourable influence upon the qualitative interpretation of the record. Pronounced effects can appear during the analyses of the minor components, where in the corresponding short zone a temperature distribution occurs due to the influence of the temperatures of the neighbouring zones such that the temperature in the zone of interest in fact does not attain a constant value in axial direction. The minor component does not possess the steady-state mobility throughout the zone, which makes the identification of the zone rather difficult.


2018 ◽  
Vol 2018 ◽  
pp. 1-16
Author(s):  
Liang Zhao ◽  
Zhiyong Yang ◽  
Lijie Wang

There is a growing demand for silos with large diameters and volumes; hence, the stresses induced by the temperature differences between the inner and the outer surfaces of the concrete walls of the large silos become significant. Sunshine is the main source of the temperature differences; and it is necessary to investigate the influences of sunshine on large concrete silos and ensure their safety and durability. In this paper, the temperature distribution of a concrete silo exposed to the sunshine was measured on site. A finite element (FE) model was built to analyze the temperature distribution under the sunshine, and the FE model was validated by comparing the yielded temperature field with that obtained on site. Based on the temperature field yielded in the FE model, the internal forces of the silo were determined by performing a structural analysis. After that, the FE model was extended and used for a parametrical study, and the influences induced by the factors like meteorological parameters, dimension of silos, and reference temperature on the temperature effects of the silo were investigated. The simulation results showed that the temperature gradient exhibited significant nonlinearities along the wall thickness. The performance of a steady-state analytical method was evaluated, which is conventionally used for the design of silos. It was found that, for the silos with the thicknesses of more than 30 centimeters, the steady-state method overestimated the temperature effects. It is suggested here that nonlinear temperature gradients should be employed for considering the temperature effects of large silos.


2014 ◽  
Vol 556-562 ◽  
pp. 907-911
Author(s):  
Chang Wei He ◽  
Meng Zhang ◽  
Xiao Ping Jia ◽  
Yuan Liu

In the paper, the design scheme of the new cold store is proposed firstly, with the consideration of the latest technology application and the convenience and maneuverability of practical teaching. Then the refrigeration system is designed based on the calculation of the heat load of the cold store. The suited components such as compressor, evaporator, condenser and expansion valve are selected and the electrical system is designed. After that the whole unit is installed and adjusted to make sure that the installation is propitious to improve the system performance and convenient for training. Finally the thermal performance of the new cold store system is tested and compared with the old system test. The result shows that the matching of the new refrigeration system is reasonable and the new cold store is up to the mustard. With the help of training on the cold store, the students will meet the essential requirements of STCW 78/95 convention on application and management of the marine cold store.


2015 ◽  
Vol 19 (3) ◽  
pp. 905-914 ◽  
Author(s):  
Farivar Fazelpour

In the last two decades many scientific papers and reports have been published in the field of the application of the carbon dioxide as a refrigerant for refrigeration systems and heat pumps. Special attention has been paid to the transcritical cycle. However, almost no papers discussed such cycles for hot climates, i.e., when the temperature of the environment is higher than 40?? during a long period of time. This paper deals with the energetic and exergetic evaluation of a CO2 refrigeration system operating in a transcritical cycle under hot climatic conditions. The performance and exergy efficiency of the CO2 refrigeration system depend on the operation conditions. The effect of varying these conditions is also investigated as well as the limitations associated with these conditions.


Author(s):  
Oscar O. Rodriguez ◽  
Arturo A. Fuentes ◽  
Constantine Tarawneh ◽  
Robert E. Jones

Thermoplastic elastomers (TPE’s) are increasingly being used in rail service in load damping applications. They are superior to traditional elastomers primarily in their ease of fabrication. Like traditional elastomers they offer benefits including reduction in noise emissions and improved wear resistance in metal components that are in contact with such parts in the railcar suspension system. However, viscoelastic materials, such as the railroad bearing thermoplastic elastomer suspension element (or elastomeric pad), are known to develop self-heating (hysteresis) under cyclic loading, which can lead to undesirable consequences. Quantifying the hysteresis heating of the pad during operation is therefore essential to predict its dynamic response and structural integrity, as well as, to predict and understand the heat transfer paths from bearings into the truck assembly and other contacting components. This study investigates the internal heat generation in the suspension pad and its impact on the complete bearing assembly dynamics and thermal profile. Specifically, this paper presents an experimentally validated finite element thermal model of the elastomeric pad and its internal heat generation. The steady-state and transient-state temperature profiles produced by hysteresis heating of the elastomer pad are developed through a series of experiments and finite element analysis. The hysteresis heating is induced by the internal heat generation, which is a function of the loss modulus, strain, and frequency. Based on previous experimental studies, estimations of internally generated heat were obtained. The calculations show that the internal heat generation is impacted by temperature and frequency. At higher frequencies, the internally generated heat is significantly greater compared to lower frequencies, and at higher temperatures, the internally generated heat is significantly less compared to lower temperatures. However, during service operation, exposure of the suspension pad to higher loading frequencies above 10 Hz is less likely to occur. Therefore, internal heat generation values that have a significant impact on the suspension pad steady-state temperature are less likely to be reached. The commercial software package ALGOR 20.3TM is used to conduct the thermal finite element analysis. Different internal heating scenarios are simulated with the purpose of obtaining the bearing suspension element temperature distribution during normal and abnormal conditions. The results presented in this paper can be used in the future to acquire temperature distribution maps of complete bearing assemblies in service conditions and enable a refined model for the evolution of bearing temperature during operation.


Author(s):  
Masanori Ohtani ◽  
Akito Kozuru ◽  
Yasuyuki Kashimoto ◽  
Mitsuto Montani ◽  
Koutaro Takeda ◽  
...  

Asymmetric thermal-hydraulic conditions among primary loops during a postulated steam line break (SLB) induce a non-uniform temperature distribution at a core inlet. When coolant of lower temperature intrudes into a part of core, it leads to a reactivity insertion and a local power increase. Therefore, an appropriate model for the core inlet temperature distribution is required for a realistic SLB analysis. In this study, numerical experiments were conducted to examine the core inlet temperature distribution under the asymmetric thermal-hydraulic coolant conditions among primary loops. 3D steady-state calculations were carried out for Japanese standard Pressurized Water Reactor (PWR) such as 2, 3, 4 loop types and an advanced PWR. Since the flow in a reactor vessel involves time-dependent velocity fluctuations due to a high Reynolds number condition and a complicated geometry of flow path, the turbulent mixing might be enhanced. Hence, the turbulent thermal diffusivity for the steady-state calculation was examined based on experimental results and another transient calculation. As a result, it was confirmed that (1) the turbulent mixing in a downcomer and a lower plenum were enhanced due to time-dependent velocity fluctuations and therefore the turbulent thermal diffusivity for steady-state calculation was specified to be greater, (2) the core inlet temperature distribution predicted by a steady-state calculation reasonably agreed with a experimental data, (3) the patterns of core inlet temperature distribution were comprehended to be dependent on the plant type, i.e. the number of primary loop and (4) under a low flow rate condition, the coolant of lower temperature appeared on the opposite side of the affected loop due to the effect of a natural convection.


Sign in / Sign up

Export Citation Format

Share Document