scholarly journals Automation of ac electric-traction NetWare digital protective relay operational control

2021 ◽  
Vol 2131 (4) ◽  
pp. 042066
Author(s):  
O V Kubkina ◽  
V G Lysenko

Abstract The widespread use of microprocessor-based digital protective relay from various manufacturers, the expansion of the programmable protective relay terminals’ functional composition, the lack of hardware, software and algorithmic support unification, problems of electromagnetic protection necessitate consideration of the issues of digital protective relay operational control automation [1-3]. The authors believe that the attention paid by operating services to the means and methods of the AC electric-traction netware protective relay Functional check is insufficient. Monitoring the correct protection functioning in real time when it is triggered by a short circuit makes it possible to identify all types of incorrect actions of the instrument units until the failure of the entire protection as a whole. The most common failures, such as “false response” and “unnecessary operation”, are detected with a probability close to unity [4-6]. The article discusses the principles of building a system of protective relay Functional check, applicable for all types of electric-traction netware protection that are currently in operation. Logical equations are given to identify incorrect actions of protective relay.

2019 ◽  
Vol 5 (5) ◽  
pp. 19-23
Author(s):  
Leonid A. GERMAN ◽  
◽  
Alexandr S. SEREBRYAKOV ◽  
Aleksey B. LOSKUTOV ◽  
Vladimir L. OSOKIN ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2187 ◽  
Author(s):  
Monica Alonso ◽  
Hortensia Amaris ◽  
Daniel Alcala ◽  
Diana M. Florez R.

Sensors for monitoring electrical parameters over an entire electricity network infrastructure play a fundamental role in protecting smart grids and improving the network’s energy efficiency. When a short circuit takes place in a smart grid it has to be sensed as soon as possible to reduce its fault duration along the network and to reduce damage to the electricity infrastructure as well as personal injuries. Existing protection devices, which are used to sense the fault, range from classic analog electro-mechanics relays to modern intelligent electronic devices (IEDs). However, both types of devices have fixed adjustment settings (offline stage) and do not provide any coordination among them under real-time operation. In this paper, a new smart sensor is developed that offers the capability to update its adjustment settings during real-time operation, in coordination with the rest of the smart sensors spread over the network. The proposed sensor and the coordinated protection scheme were tested in a standard smart grid (IEEE 34-bus test system) under different short circuit scenarios and renewable energy penetration. Results suggest that the short-circuit fault sensed by the smart sensor is improved up to 80% and up to 64% compared with analog electromechanics relays and IEDs, respectively.


2015 ◽  
Vol 793 ◽  
pp. 65-69 ◽  
Author(s):  
Abadal Salam T. Hussain ◽  
Waleed A. Oraibi ◽  
Fadhel A. Jumaa ◽  
F. Malek ◽  
Syed F. Ahmed ◽  
...  

Electrical Power System protection is required to protectboth the user and the system equipment itself fromany fault, hence electrical power system is not allowed to operate without any protection devices installed. Power System fault is defined as the undesirable condition that occurs in the power system. Some of these undesirable conditions are short circuit, current leakage, ground faultand over-under voltage. With the increasing loads, voltages and short-circuit duty in power plant, over voltage protection has become more important today. Here, the component that had been used is PIC 16F877a microcontroller to control the whole system and especially on the circuit breakers as well as the LCT display unit is used to display the voltage level and type of generator that used to serve the load. Sensors are used to measure both thevoltage and the load. The controlled digital signal from PIC microcontroller is converted by using the digital analog converter to control the whole circuit. Thus a device called protective relay is created to meet this requirement. The protective relay is mostlyoften coupled with circuit breaker in a way that it can isolate the abnormal condition in the system.


2017 ◽  
Vol 11 (4) ◽  
pp. 838-846 ◽  
Author(s):  
Davood Babazadeh ◽  
Arvind Muthukrishnan ◽  
Pinaki Mitra ◽  
Tomas Larsson ◽  
Lars Nordström

2010 ◽  
Vol 29-32 ◽  
pp. 997-1002
Author(s):  
Wen Jin Dai ◽  
Xiang Jie Chen

On the base for TMS320F2407DSDSP, it can collect the electricity signal from the CO2 arc welding, and pick–up the character parameters for the frequency distributing in the short circuit time and arc welding time. It realizes the real-time inspection by the way for analyzing the dynamic current and voltage, U-I graphic and the character parameter during the welding.


2020 ◽  
Vol 5 (2) ◽  
pp. 561-575
Author(s):  
Behnam Nouri ◽  
Ömer Göksu ◽  
Vahan Gevorgian ◽  
Poul Ejnar Sørensen

Abstract. The electrical test and assessment of wind turbines go hand in hand with standards and network connection requirements. In this paper, the generic structure of advanced electrical test benches, including grid emulator or controllable grid interface, wind torque emulator, and device under test, is proposed to harmonize state-of-the-art test sites. On the other hand, modern wind turbines are under development towards new features, concerning grid-forming, black-start, and frequency support capabilities as well as harmonic stability and control interaction considerations, to secure the robustness and stability of renewable-energy-based power systems. Therefore, it is necessary to develop new and revised test standards and methodologies to address the new features of wind turbines. This paper proposes a generic test structure within two main groups, including open-loop and closed-loop tests. The open-loop tests include the IEC 61400-21-1 standard tests as well as the additional proposed test options for the new capabilities of wind turbines, which replicate grid connection compliance tests using open-loop references for the grid emulator. In addition, the closed-loop tests evaluate the device under test as part of a virtual wind power plant and perform real-time simulations considering the grid dynamics. The closed-loop tests concern grid connection topologies consisting of AC and HVDC, as well as different electrical characteristics, including impedance, short-circuit ratio, inertia, and background harmonics. The proposed tests can be implemented using available advanced test benches by adjusting their control systems. The characteristics of a real power system can be emulated by a grid emulator coupled with real-time digital simulator systems through a high-bandwidth power-hardware-in-the-loop interface.


2020 ◽  
Vol 184 ◽  
pp. 01062
Author(s):  
R Bhavana ◽  
Omsekhar Indela ◽  
Mohammed Sajid Yaragatti

With the improvement and development in the automotive, the safety related aspects are also becoming more important. Hence there is a stringent demand for the Functional Safety and reliability. In these years, most of the vehicles are made with electrical and electronic components and systems which include lots of Electronic Controller Units (ECUs), electronic sensors, bus systems with coding. Due to the complexity in application of these electrical, electronics and programmable electronics, it is necessary to analyze the potential risk of malfunction for automotive systems. Thus, ISO 26262 has been introduced for automotive electrical/electronic (E/E) systems which ensure the complete safety installation of all ECUs, E/E systems its technical as well as management issues. In this paper, functional safety in accordance with ISO 26262 Part 3 of an electric traction inverter is done, the Functional safety report is generated in MEDINI TOOL and the short circuit fault of traction inverter is considered for Functional safety using MATLAB/SIMULINK.


Sign in / Sign up

Export Citation Format

Share Document