scholarly journals Scale-Aware Cascading for Semantic Segmentation

2022 ◽  
Vol 2161 (1) ◽  
pp. 012016
Author(s):  
Salim Ahmed Ali ◽  
B G Prasad

Abstract Semantic segmentation is an important technology commonly used in medical imaging, autonomous driving vehicles, and backgrounds for virtual meetings. Scale Aware approaches have become the standard when it comes to the semantic segmentation domain of Machine Learning. Multiple image scales are passed through the network allowing the result to use the regular CNN layers such as max-pooling as well as convolution layers. Also, a cascading hierarchy of attention has been shown to improve the accuracy of models for such segmentation tasks. The combination of both these approaches has been shown to greatly improve the accuracy of such models. A side effect of using the cascading approach is that the model turns out to use less memory in comparison to previous approaches. Auto-labelling engines are also helpful in generalizing the model further. The cityscapes dataset used here is a useful data bank as it consists of a myriad of situations where the model can be trained and tested on. This paper presents the tested results of such a segmentation model and incremental modifications to the model pipeline to understand and improve upon the existing architecture.

2020 ◽  
Vol 22 (10) ◽  
pp. 694-704 ◽  
Author(s):  
Wanben Zhong ◽  
Bineng Zhong ◽  
Hongbo Zhang ◽  
Ziyi Chen ◽  
Yan Chen

Aim and Objective: Cancer is one of the deadliest diseases, taking the lives of millions every year. Traditional methods of treating cancer are expensive and toxic to normal cells. Fortunately, anti-cancer peptides (ACPs) can eliminate this side effect. However, the identification and development of new anti Materials and Methods: In our study, a multi-classifier system was used, combined with multiple machine learning models, to predict anti-cancer peptides. These individual learners are composed of different feature information and algorithms, and form a multi-classifier system by voting. Results and Conclusion: The experiments show that the overall prediction rate of each individual learner is above 80% and the overall accuracy of multi-classifier system for anti-cancer peptides prediction can reach 95.93%, which is better than the existing prediction model.


Author(s):  
Ashnil Kumar ◽  
Lei Bi ◽  
Jinman Kim ◽  
David Dagan Feng

Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 437
Author(s):  
Yuya Onozuka ◽  
Ryosuke Matsumi ◽  
Motoki Shino

Detection of traversable areas is essential to navigation of autonomous personal mobility systems in unknown pedestrian environments. However, traffic rules may recommend or require driving in specified areas, such as sidewalks, in environments where roadways and sidewalks coexist. Therefore, it is necessary for such autonomous mobility systems to estimate the areas that are mechanically traversable and recommended by traffic rules and to navigate based on this estimation. In this paper, we propose a method for weakly-supervised recommended traversable area segmentation in environments with no edges using automatically labeled images based on paths selected by humans. This approach is based on the idea that a human-selected driving path more accurately reflects both mechanical traversability and human understanding of traffic rules and visual information. In addition, we propose a data augmentation method and a loss weighting method for detecting the appropriate recommended traversable area from a single human-selected path. Evaluation of the results showed that the proposed learning methods are effective for recommended traversable area detection and found that weakly-supervised semantic segmentation using human-selected path information is useful for recommended area detection in environments with no edges.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rajat Garg ◽  
Anil Kumar ◽  
Nikunj Bansal ◽  
Manish Prateek ◽  
Shashi Kumar

AbstractUrban area mapping is an important application of remote sensing which aims at both estimation and change in land cover under the urban area. A major challenge being faced while analyzing Synthetic Aperture Radar (SAR) based remote sensing data is that there is a lot of similarity between highly vegetated urban areas and oriented urban targets with that of actual vegetation. This similarity between some urban areas and vegetation leads to misclassification of the urban area into forest cover. The present work is a precursor study for the dual-frequency L and S-band NASA-ISRO Synthetic Aperture Radar (NISAR) mission and aims at minimizing the misclassification of such highly vegetated and oriented urban targets into vegetation class with the help of deep learning. In this study, three machine learning algorithms Random Forest (RF), K-Nearest Neighbour (KNN), and Support Vector Machine (SVM) have been implemented along with a deep learning model DeepLabv3+ for semantic segmentation of Polarimetric SAR (PolSAR) data. It is a general perception that a large dataset is required for the successful implementation of any deep learning model but in the field of SAR based remote sensing, a major issue is the unavailability of a large benchmark labeled dataset for the implementation of deep learning algorithms from scratch. In current work, it has been shown that a pre-trained deep learning model DeepLabv3+ outperforms the machine learning algorithms for land use and land cover (LULC) classification task even with a small dataset using transfer learning. The highest pixel accuracy of 87.78% and overall pixel accuracy of 85.65% have been achieved with DeepLabv3+ and Random Forest performs best among the machine learning algorithms with overall pixel accuracy of 77.91% while SVM and KNN trail with an overall accuracy of 77.01% and 76.47% respectively. The highest precision of 0.9228 is recorded for the urban class for semantic segmentation task with DeepLabv3+ while machine learning algorithms SVM and RF gave comparable results with a precision of 0.8977 and 0.8958 respectively.


2021 ◽  
pp. 100057
Author(s):  
Peiran Li ◽  
Haoran Zhang ◽  
Zhiling Guo ◽  
Suxing Lyu ◽  
Jinyu Chen ◽  
...  

2021 ◽  
Vol 13 (16) ◽  
pp. 3065
Author(s):  
Libo Wang ◽  
Rui Li ◽  
Dongzhi Wang ◽  
Chenxi Duan ◽  
Teng Wang ◽  
...  

Semantic segmentation from very fine resolution (VFR) urban scene images plays a significant role in several application scenarios including autonomous driving, land cover classification, urban planning, etc. However, the tremendous details contained in the VFR image, especially the considerable variations in scale and appearance of objects, severely limit the potential of the existing deep learning approaches. Addressing such issues represents a promising research field in the remote sensing community, which paves the way for scene-level landscape pattern analysis and decision making. In this paper, we propose a Bilateral Awareness Network which contains a dependency path and a texture path to fully capture the long-range relationships and fine-grained details in VFR images. Specifically, the dependency path is conducted based on the ResT, a novel Transformer backbone with memory-efficient multi-head self-attention, while the texture path is built on the stacked convolution operation. In addition, using the linear attention mechanism, a feature aggregation module is designed to effectively fuse the dependency features and texture features. Extensive experiments conducted on the three large-scale urban scene image segmentation datasets, i.e., ISPRS Vaihingen dataset, ISPRS Potsdam dataset, and UAVid dataset, demonstrate the effectiveness of our BANet. Specifically, a 64.6% mIoU is achieved on the UAVid dataset.


Sign in / Sign up

Export Citation Format

Share Document