Summary of the R&D of 20-inch MCP-PMTs for neutrino detection

2021 ◽  
Vol 16 (11) ◽  
pp. C11003
Author(s):  
Q. Wu ◽  
S. Qian ◽  
Y. Cao ◽  
G. Huang ◽  
M. Jin ◽  
...  

Abstract The Jiangmen Underground Neutrino Observatory (JUNO) in China aiming to determine the neutrino mass hierarchy is under construction. A new kind of large area microchannel-plate photomultiplier tube (MCP-PMT) was put forward for the JUNO by the researchers in Institute of High Energy Physics (IHEP) in China. After breaking through several core technotical barriers, the 20-inch MCP-PMT prototype with great performance was successfully produced by the MCP-PMT group in China and got 75% PMT orders (15,000 pics) from JUNO. The mass production line and batch test system was completed in North Night Vision Technology Co., Ltd. (NNVT). The performance of the MCP-PMT including the gain, the quantum efficiency, the P/V ratio, the dark count rate and the transit time spread can be batch tested. During the mass production process, the technical progress in the cathode deposition method improved the quantum efficiency of the photocathode from 30% to 35%. The aging behaviour, temperature effect, the after-pulse distribution and the flash signal of the 20-inch MCP-PMT are all detailly studied. By August of 2020, the 15,000 MCP-PMTs, which will be installed as the central liquid scintillator detector of JUNO, have been completed and delivered to Jiangmen. The average QE at 400 nm for the 15,000 pieces of MCP-PMTs is 32%.

2019 ◽  
Vol 207 ◽  
pp. 05004 ◽  
Author(s):  
Chiara De Sio

The KM3NeT Collaboration is building a network of underwater Cherenkov telescopes at two sites in the Mediterranean Sea, with the main goals of investigating astrophysical sources of high-energy neutrinos (ARCA) and of determining the neutrino mass hierarchy (ORCA). Various Machine Learning techniques, such as Random Forests, BDTs, Shallow and Deep Networks are being used for diverse tasks, such as event-type and particle identification, energy/direction estimation, source identification, signal/background discrimination and data analysis, with sound results as well as promising research paths. The main focus of this work is the application of Convolutional Neural Network models to the tasks of neutrino interaction classification, as well as the estimation of energy and direction of the propagating particles. The performances are also compared to those of the standard reconstruction algorithms used in the Collaboration.


2016 ◽  
Vol 3 (2) ◽  
pp. 252-256 ◽  
Author(s):  
Ling Wang ◽  
Mu-ming Poo

Abstract On 8 March 2012, Yifang Wang, co-spokesperson of the Daya Bay Experiment and Director of Institute of High Energy Physics, Chinese Academy of Sciences, announced the discovery of a new type of neutrino oscillation with a surprisingly large mixing angle (θ13), signifying ‘a milestone in neutrino research’. Now his team is heading for a new goal—to determine the neutrino mass hierarchy and to precisely measure oscillation parameters using the Jiangmen Underground Neutrino Observatory, which is due for completion in 2020. Neutrinos are fundamental particles that play important roles in both microscopic particle physics and macroscopic universe evolution. The studies on neutrinos, for example, may answer the question why our universe consists of much more matter than antimatter. But this is not an easy task. Though they are one of the most numerous particles in the universe and zip through our planet and bodies all the time, these tiny particles are like ‘ghost’, difficult to be captured. There are three flavors of neutrinos, known as electron neutrino (νe), muon neutrino (νμ), and tau neutrino (ντ), and their flavors could change as they travel through space via quantum interference. This phenomenon is known as neutrino oscillation or neutrino mixing. To determine the absolute mass of each type of neutrino and find out how they mix is very challenging. In a recent interview with NSR in Beijing, Yifang Wang explained how the Daya Bay Experiment on neutrino oscillation not only addressed the frontier problem in particle physics, but also harnessed the talents and existing technology in Chinese physics community. This achievement, Wang reckons, will not be an exception in Chinese high energy physics, when appropriate funding and organization for big science projects could be efficiently realized in the future.


2016 ◽  
Vol 2016 ◽  
pp. 1-21 ◽  
Author(s):  
S. Andringa ◽  
E. Arushanova ◽  
S. Asahi ◽  
M. Askins ◽  
D. J. Auty ◽  
...  

SNO+ is a large liquid scintillator-based experiment located 2 km underground at SNOLAB, Sudbury, Canada. It reuses the Sudbury Neutrino Observatory detector, consisting of a 12 m diameter acrylic vessel which will be filled with about 780 tonnes of ultra-pure liquid scintillator. Designed as a multipurpose neutrino experiment, the primary goal of SNO+ is a search for the neutrinoless double-beta decay (0νββ) of130Te. In Phase I, the detector will be loaded with 0.3% natural tellurium, corresponding to nearly 800 kg of130Te, with an expected effective Majorana neutrino mass sensitivity in the region of 55–133 meV, just above the inverted mass hierarchy. Recently, the possibility of deploying up to ten times more natural tellurium has been investigated, which would enable SNO+ to achieve sensitivity deep into the parameter space for the inverted neutrino mass hierarchy in the future. Additionally, SNO+ aims to measure reactor antineutrino oscillations, low energy solar neutrinos, and geoneutrinos, to be sensitive to supernova neutrinos, and to search for exotic physics. A first phase with the detector filled with water will begin soon, with the scintillator phase expected to start after a few months of water data taking. The0νββPhase I is foreseen for 2017.


2019 ◽  
Vol 64 (7) ◽  
pp. 635
Author(s):  
M. Schever

The Jiangmen Underground Neutrino Observatory (JUNO) is a next generation multipurpose antineutrino detector currently under construction in Jiangmen, China. The central detector, containing 20 kton of a liquid scintillator, will be equipped with ∼18 000 20 inch and 25 600 3 inch photomultiplier tubes. Measuring the reactor antineutrinos of two powerplants at a baseline of 53 km with an unprecedented energy resolution of 3%/√︀E(MeV), the main physics goal is to determine the neutrino mass hierarchy within six years of run time with a significance of 3–4q. Additional physics goals are the measurement of solar neutrinos, geoneutrinos, supernova burst neutrinos, the diffuse supernova neutrino background, and the oscillation parameters sin2 O12, Δm212, and |Δm2ee| with a precision <1%, as well as the search for proton decays. The construction is expected to be completed in 2021.


2020 ◽  
Vol 245 ◽  
pp. 03038
Author(s):  
Giuseppe Andronico

The Jiangmen Underground Neutrino Observatory (JUNO) is an underground 20 kton liquid scintillator detector being built in the south of China. Targeting an unprecedented relative energy resolution of 3% at 1 MeV, JUNO will be able to study neutrino oscillation phenomena and determine neutrino mass ordering with a statistical significance of 3-4 sigma within six years running time. These physics challenges are addressed by a large Collaboration localized in three continents. In this context, key to the success of JUNO will be the realization of a distributed computing infrastructure to fulfill foreseen computing needs. Computing infrastructure development is performed jointly by the Institute for High Energy Physics (IHEP) (part of Chinese Academy of Sciences (CAS)), and a number of Italian, French and Russian data centers, already part of WLCG (Worldwide LHC Computing Grid). Upon its establishment, JUNO is expected to deliver not less than 2 PB of data per year, to be stored in the data centers throughout China and Europe. Data analysis activities will be also carried out in cooperation. This contribution is meant to report on China-EU cooperation to design and build together the JUNO computing infrastructure and to describe its main characteristics and requirements.


2019 ◽  
Vol 209 ◽  
pp. 01012
Author(s):  
Cristina Martellini ◽  
Stefano Maria Mari ◽  
Paolo Montini ◽  
Giulio Settanta

Observation of supernovae (SN) through their neutrino emission is a fundamental point to understand both SN dynamics and neutrino physical properties. JUNO is a 20kton liquid scintillator detector, under construction in Jiangmen, China. The main aim of the experiment is to determine neutrino mass hierarchy by precisely measuring the energy spectrum of reactor electron antineutrinos. However due to its properties, JUNO has the capability of detecting a high statistics of SN events too. Existing data from SN neutrino consists only of 24 events coming from the SN 1987A,the detection of a SN burst in JUNO at ~ 10kpc will yield ~ 5x103 inverse beta decay (IBD) events from electron antineutrinos, about 1500 from proton elastic scattering (pES) above the threshold of 0.2 MeV, about 400 from electron elastic scattering (eES), plus several hundreds on other CC and NC interaction channels from all neutrino species.


Author(s):  
Ankur Nath ◽  
Ng. K. Francis

Neutrino physics is an experimentally driven field. So, we investigate the different detection techniques available in the literature and study the various neutrino oscillation experiments in a chronological manner. Our primary focus is on the construction and detection mechanisms of each experiment. Today, we know a lot about this mysterious ghostly particle by performing different experiments at different times with different neutrino sources, viz. solar, atmospheric, reactor, accelerators and high-energy astrophysical; and they have contributed in the determination of neutrino parameters. Yet the problems are far from over. We need to determine more precise values of the already known parameters and unravel the completely unknown parameters. Some of the unknowns are absolute masses of neutrino, types of neutrino, mass hierarchy, octant degeneracy and existence of leptonic CP phase(s). We analyze the neutrino experiments into the past, present and the future (or proposed). We include SNO, Kamiokande, K2K, MINOS, MINOS+, Chooz, NEMO and ICARUS in the past; while Borexino, Double Chooz, Super-K, T2K, IceCube, KamLAND, NO[Formula: see text]A, RENO and Daya Bay in the present; and SNO+, Hyper-K, T2HK, JUNO, RENO-50, INO, DUNE, SuperNEMO, KM3NeT, P2O, LBNO and PINGU in the proposed experiments. We also discuss the necessities of upgrading the present ones to those of the proposed ones thereby summarizing the potentials of the future experiments. We conclude this paper with the current status of the neutrinos.


2022 ◽  
Author(s):  
Takaaki Nomura ◽  
Hiroshi Okada

Abstract We discuss a linear seesaw model with as minimum field content as possible, introducing a modular $S_4$ with the help of gauged $U(1)_{B-L}$ symmetries. Due to rank two neutrino mass matrix, we have a vanishing neutrino mass eigenvalue, and only the normal mass hierarchy of neutrinos is favored through the modular $S_4$ symmetry.In our numerical $\Delta \chi^2$ analysis, we especially find rather sharp prediction on sum of neutrino masses to be around $60$ meV in addition to the other predictions. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Article funded by SCOAP3 and published under licence by Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Science and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd.


Instruments ◽  
2020 ◽  
Vol 4 (4) ◽  
pp. 36
Author(s):  
Ricardo Marco-Hernández

Depleted Complementary Metal-Oxide-Semiconductor (CMOS) sensors are emerging as one of the main candidate technologies for future tracking detectors in high luminosity colliders. Their capability of integrating the sensing diode into the CMOS wafer hosting the front-end electronics allows for reduced noise and higher signal sensitivity, due to the direct collection of the sensor signal by the readout electronics. They are suitable for high radiation environments due to the possibility of applying high depletion voltage and the availability of relatively high resistivity substrates. The use of a CMOS commercial fabrication process leads to their cost reduction and allows faster construction of large area detectors. In this contribution, a general perspective of the state of the art of CMOS detectors for High Energy Physics experiments is given. The main developments carried out with regard to these devices in the framework of the CERN RD50 collaboration are summarized.


Sign in / Sign up

Export Citation Format

Share Document