scholarly journals The gas flow pattern through small size Resistive Plate Chambers with 2 mm gap

2021 ◽  
Vol 16 (11) ◽  
pp. P11022
Author(s):  
Y. Pezeshkian ◽  
A. Kiyoumarsioskouei ◽  
M. Ahmadpouri ◽  
G. Ghorbani

Abstract A prototype of a single-gap glass Resistive Plate Chamber (RPC) is constructed by the authors. To find the requirements for better operation of the detector's gas system, we have simulated the flow of the Argon gas through the detector by using computational fluid dynamic methods. Simulations show that the pressure inside the chamber linearly depends on the gas flow rate and the chamber's output hose length. The simulation results were compatible with experiments. We have found that the pressure-driven speed of the gas molecules is two orders of magnitude larger in the inlet and outlet regions than the blocked corners of a 14 × 14 cm2 chamber, and most likely the difference in speed is higher for larger detectors and different geometries.

Metals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 9
Author(s):  
Peng Jiang ◽  
Jian Yang ◽  
Tao Zhang ◽  
Gangjun Xu ◽  
Hongjun Liu ◽  
...  

In the present work, mathematical modeling combined with measurement of the velocities near mold surface with rod deflecting method at the high temperature was carried out to optimize the flow field of slab continuous casting mold with medium width of 1230 mm for the production of an automobile exposed panel. The results show that the measured results of the velocities near the mold surface are in good agreement with the calculated results. The velocities near the mold surface increase with increasing the casting speed and decreasing the argon gas flow rate. When the casting speed is increased from 1.0, to 1.3, 1.5, and 2.0 m/min, the flow pattern in the mold is changed from single-roll flow (SRF), to unstable flow (UF), and then to double-roll flow (DRF), the top surface level fluctuations has the smallest value at 1.5 m/min. When the argon gas flow rate is 1 and 4 L/min, the velocity near the mold surface has a moderate value, and the flow pattern in the mold is DRF and the top surface level fluctuation is small and symmetrical. When the submerged entry nozzle (SEN) submergence depth is increased to 200 mm, the velocities near the mold surface decrease, and the top surface level fluctuation becomes small. The optimized flow field in the mold can be judged to be favorable to the surface quality of the automobile exposed panel; if the velocities near the mold surface are relatively small, the flow pattern in the mold is DRF and the top surface level fluctuation is small and symmetrical.


2013 ◽  
Vol 328 ◽  
pp. 684-689
Author(s):  
Qi Xin Liu ◽  
Zhi Yong Cai ◽  
Xiao Ping Yu

Now the non-equilibrium MD simulations are frequently used to study the gas flow characteristic at nanoscale. In the non-equilibrium MD simulations, one force which is several magnitude orders larger than the actual force was added on all gas molecules. Its very necessary to study whether such large force added in non-equilibrium MD simulation will affect the simulation results. The present paper carried out the comparative studies on the simulation results of gas flow in nanopores by non-equilibrium and equilibrium MD. The gas number density profile and the gas molecular mean free path are studied in this paper, our simulation results indicate that both non-equilibrium and equilibrium MD produce no obvious difference on simulation results of the gas number density profile and the gas molecular mean free path. It could be concluded that even the force added on every gas molecules is very large in non-equilibrium MD simulation; the added force doesnt obviously affect the simulation results.


2012 ◽  
Vol 31 (2) ◽  
pp. 316-326 ◽  
Author(s):  
Yasuko TAKAYAMA ◽  
Rie NOMOTO ◽  
Hiroyuki NAKAJIMA ◽  
Chikahiro OHKUBO

2017 ◽  
Vol 2017 ◽  
pp. 1-11
Author(s):  
Ching-Chuan Chang

The purpose of this research is to investigate the behavior of a long bubbles penetrating through viscoelastic fluids in a curved tube. The injection gas flow is controlled by a mass flow controller (MFC). The results of the experiments show that the bubbles width approaches constant value at the location six-diameter upstream from the bubbles front. A difference variable is introduced at the six-diameter location to show the shifting deviation of the bubbles in the curved tube. It is shown that, with the same fluid viscosity and the curved angle, the difference is higher when the gas flow rate is higher. Also, the difference increases proportionally when the capillary number and the Weissenberg number increase.


2018 ◽  
Vol 15 (1) ◽  
pp. 81-86 ◽  
Author(s):  
Baghdad Science Journal

In this paper, a construction microwave induced plasma jet(MIPJ) system was used to produce a non-thermal plasma jet at atmospheric pressure, at standard frequency of 2.45 GHz and microwave power of 800 W. The working gas Argon (Ar) was supplied to flow through the torch with adjustable flow rate using flow meter regulator. The influence of the MIPJ parameters such as applied voltage and argon gas flow rate on macroscopic microwave plasma parameters were studied. The macroscopic parameters results show increasing of microwave plasma jet length with increasing of applied voltage, argon gas flow rate where the plasma jet length exceed 12 cm as maximum value. While the increasing of argon gas flow rate will cause increasing into the argon gas temperature, where argon gas temperature the exceed 350 ? as maximum value and study the effect of gas flow rate on the optical properties


2020 ◽  
Vol 14 (2) ◽  
pp. 24
Author(s):  
Nurfazianawatie Mohd Zin

The synthesis of graphene by double thermal chemical vapor deposition (DTCVD) using waste of industrial cooking oil (WICO) as a natural carbon source was investigated. The synthesis parameter (Argon gas flow rate) was varied between 50sccm to 300sccm by 50sccm increments. The function of Argon gas is to provide ambient condition, remove the atmospheric air from the tube and could improve the crystallinity of graphene during synthesis. WICO (from AYAMAS food processing) was placed in the first furnace (precursor furnace) and nickel was placed in the second furnace (deposition furnace). During the synthesis, elevated quantities of carbon from the source material are separated and precipitated on the Nickel surface. The sample were characterized by using Field Emission Scanning Electron Microscopy (FESEM), X-Ray Diffraction (XRD), Energy Dispersive X-ray (EDX), and Ultraviolet Visible (UV-Vis) spectroscopy. Based on FESEM images, at 250sccm, hexagonal graphene formation was observed. Besides, optical properties can be seen by UV-Vis and as the results show that 250sccm is the highest reflectivity value. Consequently, graphene synthesis from WICO using various Argon gas flow rate as precursor is successfully demonstrated.


Sign in / Sign up

Export Citation Format

Share Document