scholarly journals Compressive strength of medium calcium fly ash based geopolymer paste

Author(s):  
I N Guntur ◽  
M W Tjaronge ◽  
R Irmawaty ◽  
J J Ekaputri
Author(s):  
A. Z. Mohd Ali ◽  
◽  
N. A. Jalaluddin ◽  
N. Zulkiflee ◽  
◽  
...  

The production of ordinary Portland cement (OPC) consumes considerable amount of natural resources, energy and at the same time contribute in high emission of CO2 to the atmosphere. A new material replacing cement as binder called geopolymer is alkali-activated concrete which are made from fly ash, sodium silicate and sodium hydroxide (NaOH). The alkaline solution mixed with fly ash producing alternative binder to OPC binder in concrete named geopolymer paste. In the process, NaOH was fully dissolved in water and cooled to room temperature. This study aims to eliminate this process by using NaOH in solid form together with fly ash before sodium silicate liquid and water poured into the mixture. The amount of NaOH solids were based on 10M concentration. The workability test is in accordance to ASTM C230. Fifty cubic mm of the geopolymer paste were prepared which consists of fly ash to alkaline solution ratio of 1: 0.5 and the curing regime of 80℃ for 24 hours with 100% humidity were implemented. From laboratory test, the workability of dry method geopolymer paste were decreased. The compressive strength of the dry mix of NaOH showed 55% and the workability has dropped to 58.4%, it showed strength reduction compared to the wet mix method.


Author(s):  
B A Affandhie ◽  
P T Kurniasari ◽  
M S Darmawan ◽  
S Subekti ◽  
B Wibowo ◽  
...  

2018 ◽  
Vol 195 ◽  
pp. 01023 ◽  
Author(s):  
Ari Widayanti ◽  
Ria Asih Aryani Soemitro ◽  
Hitapriya Suprayitno ◽  
Januarti Jaya Ekaputri

Fly ash is a by-product obtained from coal combustion process. Some of the utilization of fly ash is to produce geopolymer products which have high compressive strength, fire, chemical resistance. This paper proposes fly ash from unit 1-7 Suralaya Power Plant Indonesia. The aims of this study are to obtain characterization of fly ash and mechanical properties of geopolymer paste based on variations of the alkali activator ratio. The method was based on previous research and laboratory investigation. XRF and compressive strength were analysed in this study. Alkali activator was obtained from NaOH and Na2SiO3 mixture. The ratio of Na2SiO3 to NaOH was in the range of 0.5-2.5. Geopolymer paste was casted in acrylic cylinders with a diameter of 2 cm and a height of 4 cm. The curing was conducted at room temperature until the day for the compressive strength test at 28 days. The result showed that the fly ash is classified as F class. Increasing the alkali activator ratio influenced the strength. The best composition of geopolymer paste is made with NaOH 8M, and the mass ratio of Na2SiO3 to NaOH is 2.5. This composition produced compressive strength of 98.6 MPa.


In this paper, compressive strength (CS) of geopolymer paste has been studied under ambient conditions using locally available Class C fly ash, GGBFS and silica fume and a combination alkali activator, namely: NaOH and Na2SiO3 . Two approaches were used for mix proportioning and 60 mixes of the paste were proportioned. It is found that all the mixes proportioned were workable and no adverse effects were observed within 30 minutes of mixing. It is found that the ‘minimum voids’ approach along with a constant fly ash – to – activator ratio (FA/AA) is the best approach for the design of geopolymer mixes, rather than a constant water- to- solid ratio (w/s). Further, the role of GGBFS and SF on the CS of the paste has also been highlighted.


2019 ◽  
Vol 17 (1) ◽  
pp. 629-638 ◽  
Author(s):  
Ufafa Anggarini ◽  
Suminar Pratapa ◽  
Victor Purnomo ◽  
Ndaru Candra Sukmana

AbstractLightweight geopolymer concrete was synthesized using fly ash as an aluminosilicate source with the addition of a pore-forming agent. The synthesis of a geopolymer was conducted by employing various volume ratios of geopolymer paste to the foaming agent: 1:0.50, 1:0.67, 1:0.75, 1:1.00, 1:1.33, 1:1.50, and 1:2.00, while the ratios of aluminum powder weight percentage to the fly ash weight varied between 0.01 - 0.15 %wt. The results showed that the higher foaming agent content, the lower the compressive strength and density of the geopolymer. The ratio of the geopolymer paste to the foaming agent, 1:1.33 was found to produce the strongest light weight geopolymer whose compressive strength and density were 33 MPa and 1760 kg/m3, respectively. With the addition of 0.01%wt aluminum powder, the geopolymer specimen showed the highest compressive strength of 42 MPa and density of 1830 kg/m3, respectively. X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and FT-IR were utilized to study the effects of foaming agent and aluminum powder addition onto the microstructure, surface morphology, and functional groups of the geopolymer. Both types of synthesized geopolymers have the potential to be developed in terms of compressive strength and density in the future.


2013 ◽  
Vol 594-595 ◽  
pp. 151-155 ◽  
Author(s):  
Alida Abdullah ◽  
Abdullah Mohd Mustafa Al Bakri ◽  
Hussin Kamarudin ◽  
C.M. Ruzaidi ◽  
Zarina Yahya ◽  
...  

This paper presented the compressive strength of geopolymer paste with different NaOH concentration and morphology analysis for sintered artificial aggregate. This artificial aggregate was produce based on mix design with highest compressive strength which is 12 M. The sample was cured at 70 °C for 24 hours and then it was exposed to different temperature at range 500 °C to 700 °C. Scanning Electron Microscopy (SEM) has been used to identify the formation of microstructure. The geopolymer artificial aggregate was an alternative ways to produce a greener environmental. In this study, the compressive strength for different Na2SiO3/NaOH ratio has been analyzed. The morphology for best mix design then were analyze for different curing temperature. The result shows fly ash based geopolymer paste with 12 M of NaOH concentration shows excellent result with 7.30 MPa at 2.5 ratio of Na2SiO3/NaOH and for geopolymer artificial aggregate, when temperature of heat treatment increased, the open porosity of porous geopolymer surface decreased.


Sign in / Sign up

Export Citation Format

Share Document