scholarly journals Application of Lianas in Vertical Greening Landscape of Xi’an City

2021 ◽  
Vol 768 (1) ◽  
pp. 012155
Author(s):  
Lu Han
2015 ◽  
Vol 166 (4) ◽  
pp. 219-222
Author(s):  
Urs Gantner

Densification by greening, or what we can learn from Singapore (essay) Singapore, a city-state with a high population density, wants to give its population, its tourists and its economy a living and livable city and has developed the concept of the Garden City. Parks, nature reserves, forest, green corridors, trees, botanical gardens, horizontal and vertical greening of buildings, as well as popular participation, are all important for this vision of the city. Singapore is counting on dense construction alongside “greening” and biodiversity. Let us be prepared to learn from Singapore's example! Our land is also a non-renewable resource. To protect our ever more limited agricultural land, we should renounce any extension of building land, and free ourselves from the expanding carpets of suburban development. Let us build multiple urban neighbourhoods with mixed use and more biodiversity. Let us develop new types of communal gardens. Urban gardens in the widest sense – from private gardens to garden cooperatives, to parks and botanical gardens – are a part of our living space. The city should be our garden.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 813
Author(s):  
Hui Dang ◽  
Jing Li ◽  
Yumeng Zhang ◽  
Zixiang Zhou

Urban green spaces can provide many types of ecosystem services for residents. An imbalance in the pattern of green spaces leads to an inequality of the benefits of such spaces. Given the current situation of environmental problems and the basic geographical conditions of Xi’an City, this study evaluated and mapped four kinds of ecosystem services from the perspective of equity: biodiversity, carbon sequestration, air purification, and climate regulation. Regionalization with dynamically constrained agglomerative clustering and partitioning (REDCAP) was used to obtain the partition groups of ecosystem services. The results indicate that first, the complexity of the urban green space community is low, and the level of biodiversity needs to be improved. The dry deposition flux of particulate matter (PM2.5) decreases from north to south, and green spaces enhance the adsorption of PM2.5. Carbon sequestration in the south and east is higher than that in the north and west, respectively. The average surface temperature in green spaces is lower than that in other urban areas. Second, urban green space resources in the study area are unevenly distributed. Therefore, ecosystem services in different areas are inequitable. Finally, based on the regionalization of integrated ecosystem services, an ecosystem services cluster was developed. This included 913 grid spaces, 12 partitions, and 5 clusters, which can provide a reference for distinct levels of ecosystem services management. This can assist urban managers who can use these indicators of ecosystem service levels for planning and guiding the overall development pattern of green spaces. The benefits would be a maximization of the ecological functions of green spaces, an improvement of the sustainable development of the city, and an improvement of people’s well-being.


2021 ◽  
Vol 13 (7) ◽  
pp. 3910
Author(s):  
Michael Gräf ◽  
Markus Immitzer ◽  
Peter Hietz ◽  
Rosemarie Stangl

Urban green infrastructures offer thermal regulation to mitigate urban heat island effects. To gain a better understanding of the cooling ability of transpiring plants at the leaf level, we developed a method to measure the time series of thermal data with a miniaturized, uncalibrated thermal infrared camera. We examined the canopy temperature of four characteristic living wall plants (Heuchera x cultorum, Bergenia cordifolia, Geranium sanguineum, and Brunnera macrophylla) under increasing drought stress and compared them with a well-watered control group. The method proved suitable to evaluate differences in canopy temperature between the different treatments. Leaf temperatures of water-stressed plants were 6 to 8 °C higher than those well-watered, with differences among species. In order to cool through transpiration, vegetation in green infrastructures must be sufficiently supplied with water. Thermal cameras were found to be useful to monitor vertical greening because leaf surface temperature is closely related to drought stress. The usage of thermal cameras mounted on unmanned aerial vehicles could be a rapid and easy monitoring system to cover large façades.


Author(s):  
Min Shang ◽  
Ji Luo

The expansion of Xi’an City has caused the consumption of energy and land resources, leading to serious environmental pollution problems. For this purpose, this study was carried out to measure the carbon carrying capacity, net carbon footprint and net carbon footprint pressure index of Xi’an City, and to characterize the carbon sequestration capacity of Xi’an ecosystem, thereby laying a foundation for developing comprehensive and reasonable low-carbon development measures. This study expects to provide a reference for China to develop a low-carbon economy through Tapio decoupling principle. The decoupling relationship between CO2 and driving factors was explored through Tapio decoupling model. The time-series data was used to calculate the carbon footprint. The auto-encoder in deep learning technology was combined with the parallel algorithm in cloud computing. A general multilayer perceptron neural network realized by a parallel BP learning algorithm was proposed based on Map-Reduce on a cloud computing cluster. A partial least squares (PLS) regression model was constructed to analyze driving factors. The results show that in terms of city size, the variable importance in projection (VIP) output of the urbanization rate has a strong inhibitory effect on carbon footprint growth, and the VIP value of permanent population ranks the last; in terms of economic development, the impact of fixed asset investment and added value of the secondary industry on carbon footprint ranks third and fourth. As a result, the marginal effect of carbon footprint is greater than that of economic growth after economic growth reaches a certain stage, revealing that the driving forces and mechanisms can promote the growth of urban space.


Land ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 286
Author(s):  
Dingrao Feng ◽  
Wenkai Bao ◽  
Meichen Fu ◽  
Min Zhang ◽  
Yiyu Sun

Land use change plays a key role in terrestrial systems and drives the process of ecological pattern change. It is important to investigate the process of land use change, predict land use patterns, and reveal the characteristics of land use dynamics. In this study, we adopted the Markov model and future land use (FLUS) model to predict the future land use conditions in Xi’an city. Furthermore, we investigated the characteristics of land use change from a novel perspective, i.e., via establishment of a complex network model. This model captured the characteristics of the land use system during different periods. The results indicated that urban expansion and cropland loss played an important role in land use pattern change. The future gravity center of urban development moved along the opposite direction to that from 2000 to 2015 in Xi’an city. Although the rate of urban expansion declined in the future, urban expansion remained the primary driver of land use change. The primary urban development directions were east-southeast (ENE), north-northeast (NNE) and west-southwest (WSW) from 1990 to 2000, 2000 to 2015, and 2015 to 2030, respectively. In fact, cropland played a vital role in land use dynamics regarding all land use types, and the stability of the land use system decreased in the future. Our study provides future land use patterns and a novel perspective to better understand land use change.


2021 ◽  
Vol 13 (9) ◽  
pp. 4886
Author(s):  
Katia Perini ◽  
Fabio Magrassi ◽  
Andrea Giachetta ◽  
Luca Moreschi ◽  
Michela Gallo ◽  
...  

Urban greening provides a wide range of ecosystem services to address the main challenges of urban areas, e.g., carbon sequestration, evapotranspiration and shade, thermal insulation, and pollution control. This study evaluates the environmental sustainability of a vertical greening system (VGS) built in 2014 in Italy, for which extensive monitoring activities were implemented. The life-cycle assessment methodology was applied to quantify the water–energy–climate nexus of the VGS for 1 m2 of the building’s wall surface. Six different scenarios were modelled according to three different end-of-life scenarios and two different useful lifetime scenarios (10 and 25 years). The environmental impact of global-warming potential and generated energy consumption during the use phase in the VGS scenarios were reduced by 56% in relation to the baseline scenario (wall without VGS), and showed improved environmental performance throughout the complete life cycle. However, the water-scarcity index (WSI) of the VGS scenarios increased by 42%. This study confirms that the installation of VGSs offers a relevant environmental benefit in terms of greenhouse-gas emissions and energy consumption; however, increased water consumption in the use phase may limit the large-scale application of VGSs.


Sign in / Sign up

Export Citation Format

Share Document