scholarly journals Landslide Susceptibility Zonation of Rongga District and Surrounding Areas Using Weight of Evidence (WoE) Method

2021 ◽  
Vol 873 (1) ◽  
pp. 012088
Author(s):  
Imam A. Sadisun ◽  
Dika B. Prasaja ◽  
Rendy D. Kartiko ◽  
Indra A. Dinata

Abstract Rongga District is located on West Bandung Regency, West Java, which is prone to landslide disaster. Morphological conditions in the form of steep hills become the one of landslide controlling factors. There are many landslide occurrences happen in this area, such as Nyomplong, Cibitung Village on March 23, 2020. The incident was triggered by heavy rain and strong winds. This area was chosen to assess the landslide susceptibility using the Weight of Evidence (WoE) Method. WoE is probabilistic bivariate method which connecting parameters causes landslide against distribution of landslide in research area. Landslide data which generated from direct observation in the field and satellite imagery morphology are 572 landslide events. The data is divided into two groups, the analysis data set (70%) and the validation data set (30%). The parameters used in the analysis are land use, slope, slope direction, curvature, elevation, rainfall, lithology, NDWI, NDVI, distance from road, distance from the river, distance to lineament, flow direction, lineament density, stream density and river density. The parameters validated by determining the value of the area under curve (AUC). AUC value> 0.6 will be used in the landslide susceptibility zonation next analysis. Validation of landslide susceptibility zonation was carried out using 172 landslide events. The result of the WoE validation shows the AUC success rate of 0.70 and AUC prediction rate of 0.76. The value of AUC shows that the modelling is good and acceptable.

2021 ◽  
pp. 273
Author(s):  
Syachrul Arief ◽  
Ihsan Muhamad Muafiry

This study aims to utilize GNSS for meteorology in Indonesia. With the "goGPS" software, the zenith troposphere delay (ZTD) value is estimated. Calculations in rainy conditions, the ZTD value is converted into a water vapor value (PWV). The research area for the phenomenon of heavy rain occurred at the end of 2019 in Jakarta and its surroundings, which caused flooding on January 1, 2020. According to the Geophysical Meteorology and Climatology Agency (BMKG), the flood's primary cause was high rainfall. Meanwhile, the rainfall at Taman Mini and Jatiasih stations was 335 mm/day and 260 mm/day, respectively. We get an interesting pattern of PWV values for this rain phenomenon. GNSS data processing, the PWV value at five GNSS stations around Jakarta, shows the same pattern even though the average distance between GNSS stations is ~ 30 km. The PWV value appears to increase at noon on December 30, 2019, and the peak occurs in the early hours of December 31, 2019. The PWV value suddenly decreases at noon on January 1, 2020. Next, the PWV value increases again but not as high as at the previous peak. Since January 2, 2020, the PWV value has decreased and remained almost constant until January 4, 2020. In that period, there were two events that the PWV value increased. The PWV value at the first peak is ~ 70 mm, and at the second peak ~ 65 mm. The most significant increase in PWV value was recorded at CJKT stations.


Author(s):  
D. N. Javier ◽  
L. Kumar

<p><strong>Abstract.</strong> In a high-rainfall, landslide-prone region in this tropical mountain region, a landslide database was constructed from high resolution satellite imagery (HRSI), local reports and field observations. The landslide data was divided into training (80%) and validation sets (20%). From the digital elevation model (DEM), scanned maps and HRSI, twelve landslide conditioning factors were derived and analysed in a GIS environment: elevation, slope angle, slope aspect, plan curvature, profile curvature, distance to drainage, soil type, lithology, distance to fault/lineament, land use/land cover, distance to road and normalized difference vegetation index (NDVI). Landslide susceptibility was then estimated using the frequency ratio method as applied on the training data. The detailed procedure is explained herein. The landslide model generated was then evaluated using the validation data set. Results demonstrate that the very high, high, moderate, low and very low susceptibility classes included an average of 86%, 7%, 4%, 3% and 1% of the training cells, and 84%, 7%, 5%, 3% and 1% of the validation cells, respectively. Success and prediction rates obtained were 90% and 89%, respectively. The sound output has discriminated well the landslide prone areas and thus may be used in landslide hazard mitigation for local planning.</p>


1989 ◽  
Vol 6 (3) ◽  
pp. 123-126 ◽  
Author(s):  
Dale S. Solomon ◽  
Terry D. Droessler ◽  
Ronald C. Lemin

Abstract Segmented quadratic taper equations were developed from red spruce and balsam fir stem analysis data in the Northeast. Estimated diameters and volumes from the taper equations were compared with actual diameters and volumes in a validation data set, and were found to be precise and have negligible bias in prediction. The derived volume from the taper equation was also compared to existing total tree volume equations for spruce and fir. The error analyses showed the segmented taper equations provided an accurate and precise alternative to total tree volume equations. North. J. Appl. For. 6:123-126, September 1989.


2020 ◽  
pp. 3-17
Author(s):  
Peter Nabende

Natural Language Processing for under-resourced languages is now a mainstream research area. However, there are limited studies on Natural Language Processing applications for many indigenous East African languages. As a contribution to covering the current gap of knowledge, this paper focuses on evaluating the application of well-established machine translation methods for one heavily under-resourced indigenous East African language called Lumasaaba. Specifically, we review the most common machine translation methods in the context of Lumasaaba including both rule-based and data-driven methods. Then we apply a state of the art data-driven machine translation method to learn models for automating translation between Lumasaaba and English using a very limited data set of parallel sentences. Automatic evaluation results show that a transformer-based Neural Machine Translation model architecture leads to consistently better BLEU scores than the recurrent neural network-based models. Moreover, the automatically generated translations can be comprehended to a reasonable extent and are usually associated with the source language input.


Author(s):  
Manpreet Kaur ◽  
Chamkaur Singh

Educational Data Mining (EDM) is an emerging research area help the educational institutions to improve the performance of their students. Feature Selection (FS) algorithms remove irrelevant data from the educational dataset and hence increases the performance of classifiers used in EDM techniques. This paper present an analysis of the performance of feature selection algorithms on student data set. .In this papers the different problems that are defined in problem formulation. All these problems are resolved in future. Furthermore the paper is an attempt of playing a positive role in the improvement of education quality, as well as guides new researchers in making academic intervention.


BMJ Open ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. e040778
Author(s):  
Vineet Kumar Kamal ◽  
Ravindra Mohan Pandey ◽  
Deepak Agrawal

ObjectiveTo develop and validate a simple risk scores chart to estimate the probability of poor outcomes in patients with severe head injury (HI).DesignRetrospective.SettingLevel-1, government-funded trauma centre, India.ParticipantsPatients with severe HI admitted to the neurosurgery intensive care unit during 19 May 2010–31 December 2011 (n=946) for the model development and further, data from same centre with same inclusion criteria from 1 January 2012 to 31 July 2012 (n=284) for the external validation of the model.Outcome(s)In-hospital mortality and unfavourable outcome at 6 months.ResultsA total of 39.5% and 70.7% had in-hospital mortality and unfavourable outcome, respectively, in the development data set. The multivariable logistic regression analysis of routinely collected admission characteristics revealed that for in-hospital mortality, age (51–60, >60 years), motor score (1, 2, 4), pupillary reactivity (none), presence of hypotension, basal cistern effaced, traumatic subarachnoid haemorrhage/intraventricular haematoma and for unfavourable outcome, age (41–50, 51–60, >60 years), motor score (1–4), pupillary reactivity (none, one), unequal limb movement, presence of hypotension were the independent predictors as its 95% confidence interval (CI) of odds ratio (OR)_did not contain one. The discriminative ability (area under the receiver operating characteristic curve (95% CI)) of the score chart for in-hospital mortality and 6 months outcome was excellent in the development data set (0.890 (0.867 to 912) and 0.894 (0.869 to 0.918), respectively), internal validation data set using bootstrap resampling method (0.889 (0.867 to 909) and 0.893 (0.867 to 0.915), respectively) and external validation data set (0.871 (0.825 to 916) and 0.887 (0.842 to 0.932), respectively). Calibration showed good agreement between observed outcome rates and predicted risks in development and external validation data set (p>0.05).ConclusionFor clinical decision making, we can use of these score charts in predicting outcomes in new patients with severe HI in India and similar settings.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhixiang Yu ◽  
Haiyan He ◽  
Yanan Chen ◽  
Qiuhe Ji ◽  
Min Sun

AbstractOvarian cancer (OV) is a common type of carcinoma in females. Many studies have reported that ferroptosis is associated with the prognosis of OV patients. However, the mechanism by which this occurs is not well understood. We utilized Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA) to identify ferroptosis-related genes in OV. In the present study, we applied Cox regression analysis to select hub genes and used the least absolute shrinkage and selection operator to construct a prognosis prediction model with mRNA expression profiles and clinical data from TCGA. A series of analyses for this signature was performed in TCGA. We then verified the identified signature using International Cancer Genome Consortium (ICGC) data. After a series of analyses, we identified six hub genes (DNAJB6, RB1, VIMP/ SELENOS, STEAP3, BACH1, and ALOX12) that were then used to construct a model using a training data set. The model was then tested using a validation data set and was found to have high sensitivity and specificity. The identified ferroptosis-related hub genes might play a critical role in the mechanism of OV development. The gene signature we identified may be useful for future clinical applications.


2014 ◽  
Vol 44 (7) ◽  
pp. 784-795 ◽  
Author(s):  
Susan J. Prichard ◽  
Eva C. Karau ◽  
Roger D. Ottmar ◽  
Maureen C. Kennedy ◽  
James B. Cronan ◽  
...  

Reliable predictions of fuel consumption are critical in the eastern United States (US), where prescribed burning is frequently applied to forests and air quality is of increasing concern. CONSUME and the First Order Fire Effects Model (FOFEM), predictive models developed to estimate fuel consumption and emissions from wildland fires, have not been systematically evaluated for application in the eastern US using the same validation data set. In this study, we compiled a fuel consumption data set from 54 operational prescribed fires (43 pine and 11 mixed hardwood sites) to assess each model’s uncertainties and application limits. Regions of indifference between measured and predicted values by fuel category and forest type represent the potential error that modelers could incur in estimating fuel consumption by category. Overall, FOFEM predictions have narrower regions of indifference than CONSUME and suggest better correspondence between measured and predicted consumption. However, both models offer reliable predictions of live fuel (shrubs and herbaceous vegetation) and 1 h fine fuels. Results suggest that CONSUME and FOFEM can be improved in their predictive capability for woody fuel, litter, and duff consumption for eastern US forests. Because of their high biomass and potential smoke management problems, refining estimates of litter and duff consumption is of particular importance.


Sign in / Sign up

Export Citation Format

Share Document