scholarly journals Concrete Properties using Treated Recycled EPS

2021 ◽  
Vol 877 (1) ◽  
pp. 012028
Author(s):  
Hasan Jasim Mohammed ◽  
Yasir Gaib Hussein

Abstract The study explores the mechanical properties of treated recycled extended polystyrene (TEPS) concrete, treated by two methods, one by heating, and the other by immersed recycled EPS in cement neat. By substituting 0 %, 15 %, 25 %, and 35 % of the coarse aggregate volume with treated recycled EPS, (for both method). Treated recycled TEPS concrete ratios are experimentally prepared, while the cement is substituted thru 10 % silica fume (SF). Tests were carried out, like compressive strength, splitting tensile strength, modulus of rupture, and density. The outcomes display the decreasing of the compressive strength, tensile strength and modulus of rupture of TEPS concretes with rise TEPS percentage around 26 %, 17 % and 32 %, respectively (35% TEPS) related to standard concrete. They also show that TEPS concrete density decrease about 30 % of normal concrete. The TEPS is suitable in concrete and meets provisions.

2021 ◽  
Vol 877 (1) ◽  
pp. 012029
Author(s):  
Hasan Jasim Mohammed ◽  
Zeina Saad Sabir

Abstract The purpose of this research is to investigate the properties of Recycled Demolition Aggregate (RDA) concrete. Five RDA concrete ratios are prepared experimentally by substituting, 0%, 25%, 50%, 75% and 100% of the gravel weight with RDA. While, the 10% of cement is substituted by silica fume (Si). Adding steel fibres (SF) (0.5 %, 1.0 % and 1.5 %). Treated RDA with cement mortar and superplasticizer (SP) admixture added to (1%) of total cementitious materials (TCM). The concrete properties exams performed such as; density, compressive strength, splitting tensile strength, and modulus of rupture. The tests concluded that the compressive strength, splitting tensile strength and rupture modulus values of RDA concretes are reduced with an increased RDA ratio relative to normal concrete. Density of RDA concrete reduces around 9% of normal concrete. The RDA is suitable in concrete and meets specifications.


2019 ◽  
Vol 26 (1) ◽  
pp. 33-40
Author(s):  
Muyasser M. Jomaa’h ◽  
Baraa Thaer Kamil ◽  
Omer S. Baghabra

The light of the world’s technological development in the construction field and the continuous need to apply of a high-efficiency building materials because old methods is no longer is used after the advent of the solutions that characterized by fast applications and maximum protection in addition to reducing costs and increase the sustainability of the establishment and its design age. The lightweights of various installations are an urgent need to decrease the dead loads. Therefore, this study is specie locally focus on replacing the normal coarse aggregate with lightweight coarse aggregate (claystone (bonza), rubber, thermostone and polystyrene) in various volumetric ratios of (25, 50 and 75) % in addition to a preparation reference mix. For the purpose identifying and studying the important specifications the new concrete which contributes to the self-load reduction of the concrete by reducing the total density of the mixture, were prepared models of cylinders and standard prisms, to evaluate the compressive strength and the splitting tensile strength respectively, Also the modulus of rupture and the unit weight, where carried out. The results tests indicated that a drop in the mechanical properties of the concrete with increasing the lightweight coarse aggregate , mechanical properties values : compressive strength , rupture modulus, splitting tensile strength and flexural strength were between (10.66-28.99) MPa (1.122-3.372) MPa, (3.606-6.83) MPa and (20.101-25.874)MPa compared with a reference mixes (38.44MPa), (3.969MPa), (10.476MPa) and (26.940)MPa respectively for mixes of (25, 50 and75)% with different light coarse aggregate , also the values of an oven dry density were between (1665.5-2287.58)kg/m3 compared with reference mixes (2426.41kg/m³). The best concrete mix was (M7, M10) of low density (1598.4 kg/m3) and (1580.4) kg /m3 and the compression strength within the permissible limits (15.47) MPa.


2014 ◽  
Vol 1065-1069 ◽  
pp. 1985-1989
Author(s):  
Jia Bin Wang ◽  
Di Tao Niu ◽  
Rui Ma ◽  
Ze Long Mi

In order to investigate the carbonation resistance of shotcrete and the mechanical properties after carbonation, the accelerated carbonation test was carried out. The results indicate that the carbonation resistance of shotcrete is superior to that of normal concrete. With the increasing of carbonation depth, compressive strength and splitting tensile strength of shotcrete grew rapidly. The admixing of steel fiber can further improve the carbonation resistance, reduce the carbonation rate, and increase the splitting tensile strength of shotcrete greatly. Besides, based on analyzing the effects of construction technology and steel fiber of concrete for the carbonation resistance, a carbonation depth model for shotcrete was established. Key words: shotcrete; carbonation; steel fiber; mechanical properties


2013 ◽  
Vol 372 ◽  
pp. 231-234
Author(s):  
Jeong Eun Kim ◽  
Wan Shin Park ◽  
Nam Yong Eom ◽  
Sun Woong Kim ◽  
Do Gyeum Kim ◽  
...  

In this study, some experimental investigations on the development of mechanical properties with age of high performance concrete (HPC) incorporated with blast furnace slag with fly ash or silica fume have been reported. Four different blended HPC were prepared in 0.40 water-binder ratio. At every four mixtures, the compressive strength, splitting tensile strength and modulus of elasticity at 7 and 28 days have been observed for HPC developments. Consequently, only replacement of silica fume significantly increases the mechanical properties in terms of compressive strength, splitting tensile strength and modulus of elasticity.


2011 ◽  
Vol 250-253 ◽  
pp. 750-754 ◽  
Author(s):  
Qin Yong Ma ◽  
Wei Huang ◽  
Peng Bo Cui

Using 6% HCSA, HEA and CSA equivalent replacement Slag Portland Cement add into the normal concrete, the compressive strength, splitting tensile strength and flexural strength at the age of 3d, 7d and 28d are researched. It is concluded that reinforcing effect of the three expensive agents are in order CSA, HEA and HCSA form the view of mechanics , expansive agents increase the bonding force between coarse aggregate and slurry, alleviate the development speed of cracks and increase the destruction deformability of concrete.


2011 ◽  
Vol 99-100 ◽  
pp. 994-999
Author(s):  
Rui Zhen Yan ◽  
Hong Xiu Du ◽  
Hui Fang Wang ◽  
Yan Wang

An experimental research was performed on the compressive strength and splitting tensile strength for HSC with various polypropylene(PP) fibers after exposure to temperatures 300°C, 500°C, 700°C, 900°C. Cubes of 150mm×150mm were designed and fabricated with C60, blended with silica fume and slag, mixed with PP fibers, respectively. These specimens were naturally cooled to room temperature after being heated in an electric furnace. No explosive spalling was observed during the fire test on all HSC with PP fibers. From the results of nine types of concretes, both the compressive strength and splitting tensile strength of HSC with PP fibers decreased with the increase of temperature. Through a series of measurement, the relationships between the mechanical properties and the various PP fibers in HSC were analyzed, including the dosage and length of PP fiber. Based on the comparison in the experimental results, the proposed optimum of PP fiber in HSC was 1.5kg/m3 under the test condition. In addition, PP fiber with the length of 8mm could be more applicable to use.


2016 ◽  
Vol 852 ◽  
pp. 1413-1420
Author(s):  
Ben Ying Wu ◽  
Xi Wu Zhou ◽  
Jin Zhong Lu

High-performance concrete was prepared by using ceramic waste as coarse aggregate. The influences of several factors, such as the contents of ceramic coarse aggregates, fly ashes and silica fumes, on the properties of concrete material were investigated. The results show that the compressive strength of semi-porcelain coarse aggregate concrete are slightly lower than that of natural concrete, and the splitting tensile strength and the ratio of compressive strength and splitting tensile strength is similar to the ones of natural concrete. After fly ash and silica fume mixed, the compressive strength, the splitting tensile strength and the resistance to water penetration of concrete with semi-porcelain coarse aggregate increase significantly with the increase of silica fume content which meet the requirements of high-performance concrete. Concrete with orcelain coarse aggregate is only suitable for low strength concrete.


2019 ◽  
Vol 9 (2) ◽  
pp. 202-207
Author(s):  
Imad R. Mustafa ◽  
Omar Q. Aziz

An experimental program is carried out to evaluate the mix design and mechanical properties of normal strength concrete (NSC) grade 40 MPa and high-strength concrete grade 60 and 80 MPa. The study investigates using silica fume to produce high-strength concrete grade 80 MPa and highlights the influence of adding steel fiber on the mechanical properties of normal and high-strength concrete. For NSC, the compressive strength is found at 7 and 28 days. While for higher strength concrete, the compressive strength is determined at 7, 28, and 56 days. The splitting tensile strength and flexural strength is determined at 28 days. Based on results, the specimens with 14% silica fume are higher compressive strength than the specimens with 10% silica fume by 21.8%. The presence of steel fiber increased the compressive strength of normal and high-strength concrete at 7, 28, and 56 days curing ages with different percentage and the steel fiber has an important role in increasing the splitting tensile strength and flexural strength of normal and high-strength concrete.


2010 ◽  
Vol 168-170 ◽  
pp. 426-429 ◽  
Author(s):  
Shi Hua Zhou ◽  
Hua Quan Yang ◽  
Yun Dong

Based on typical hydraulic engineering, difference of performances between full-graded and wet-screened concrete was studied. Results showed that owing to the gradation effect and skeleton effect of coarse aggregate and the size effect of specimen, full-graded concrete was 105%, 75%, 65% and 115% in compressive strength, splitting tensile strength, ultimate tension and compressive elastic modulus respectively, compared with wet-screened concrete. Under the same curing condition, compressive strength of wet-screened standard concrete specimen can represent the actual compressive strength of full-graded concrete.


2018 ◽  
Vol 19 (2) ◽  
pp. 30-42
Author(s):  
Md. Nazmul Huda ◽  
Mohd Zamin Jumaat ◽  
A. B. M. Saiful Islam ◽  
Walid A. Al-Kutti

The performance of high strength structural lightweight concrete (LWC) using the palm wastes, oil palm shell (OPS) as well as palm oil clinker (POC) has been reported. Existing literatures used either OPS or POC individually for production of LWC. Each concept has their own advantages-disadvantages. In this study, both OPS and POC have been put together as coarse aggregate on the way to see the improvement of mechanical properties of waste based LWC. To achieve this purpose, regular coarse aggregate has been fully replaced by OPS and POC in the concrete. This structural grade lightweight concrete is named as palm shell and clinker concrete (PSCC). Attempts have been made with the series of OPS and POC mixture aimed at identifying for better performance. The quantity of OPS and POC mix has been varied as 30%, 40%, 50%, 60% and 70%. Mechanical properties of PSCC like density, workability, compressive strength at different ages, flexural strength, splitting tensile strength as well as modulus of elasticity have been evaluated. It is revealed that the proposed PSCC has extensive potential in terms of high compressive strength and good material behavior to perform as a better LWC. The study could offer structural lightweight concrete of compressive strength up to 46 MPa that is 31% higher than the control mix. The usage of 50% OPS to 50% POC coarse aggregate by vol. in the concrete mix is found to be the optimum mix. Furthermore, simple correlations have been developed which can easily predict compressive strength, splitting tensile strength, flexural strength, modulus of elasticity and ultrasonic pulse velocity of lightweight concrete.


Sign in / Sign up

Export Citation Format

Share Document