scholarly journals Evaluation of Mix Proportions and Mechanical Properties of Normal and High-Strength Fibers Concrete

2019 ◽  
Vol 9 (2) ◽  
pp. 202-207
Author(s):  
Imad R. Mustafa ◽  
Omar Q. Aziz

An experimental program is carried out to evaluate the mix design and mechanical properties of normal strength concrete (NSC) grade 40 MPa and high-strength concrete grade 60 and 80 MPa. The study investigates using silica fume to produce high-strength concrete grade 80 MPa and highlights the influence of adding steel fiber on the mechanical properties of normal and high-strength concrete. For NSC, the compressive strength is found at 7 and 28 days. While for higher strength concrete, the compressive strength is determined at 7, 28, and 56 days. The splitting tensile strength and flexural strength is determined at 28 days. Based on results, the specimens with 14% silica fume are higher compressive strength than the specimens with 10% silica fume by 21.8%. The presence of steel fiber increased the compressive strength of normal and high-strength concrete at 7, 28, and 56 days curing ages with different percentage and the steel fiber has an important role in increasing the splitting tensile strength and flexural strength of normal and high-strength concrete.

2010 ◽  
Vol 34-35 ◽  
pp. 1441-1444 ◽  
Author(s):  
Ju Zhang ◽  
Chang Wang Yan ◽  
Jin Qing Jia

This paper investigates the compressive strength and splitting tensile strength of ultra high strength concrete containing steel fiber. The steel fibers were added at the volume fractions of 0%, 0.5%, 0.75%, 1.0% and 1.5%. The compressive strength of the steel fiber reinforced ultra high strength concrete (SFRC) reached a maximum at 0.75% volume fraction, being a 15.5% improvement over the UHSC. The splitting tensile strength of the SFRC improved with increasing the volume fraction, achieving 91.9% improvements at 1.5% volume fraction. Strength models were established to predict the compressive and splitting tensile strengths of the SFRC. The models give predictions matching the measurements. Conclusions can be drawn that the marked brittleness with low tensile strength and strain capacities of ultra high strength concrete (UHSC) can be overcome by the addition of steel fibers.


2012 ◽  
Vol 174-177 ◽  
pp. 1388-1393
Author(s):  
Hai Qing Song ◽  
Teng Long Zheng

Plain concrete is susceptible to cracking under aggressive environment such as in freezing shaft. And addition of steel fibres in plain high strength concrete is proved to be effective in cracking resistance and brittleness improvement, etc. This paper presents results of experimental investigation carried out to study the mechanical properties of steel fibre-reinforced concrete having volume fractions of 0.38%, 0.51% and 0.64% for two types of fibres respectively. The results of this study revealed that there is an increase for all the mechanical properties such as compressive strength, split tensile strength, modulus of elasticity and flexural strength. Enhancement for split tensile strength and flexural strength is more evident than compressive strength.


This paper aimed to investigate the mechanical characteristics of HSC of M60 concrete adding 25% of fly ash to cement and sand and percentage variations of silica fumes 0%,5% and 10% to cement with varying sizes of 10mm,6mm,2mm and powder of granite aggregate with w/c of 0.32. Specimens are tested for compressive strength using 10cm X 10cmX10cm cubes for 7,14,28 days flexural strength was determined by using 10cmX10cmX50cm beam specimens at 28 days and 15cm diameter and 30cm height cylinder specimens at 28 days using super plasticizers of conplast 430 as a water reducing agent. In this paper the experimental set up is made to study the mechanical properties of HSC with and without coarse aggregate with varying sizes as 10mm, 6mm, 2mm and powder. Similarly, the effect of silica fume on HSC by varying its percentages as 0%, 5% and 10% in the mix studied. For all mixes 25% extra fly ash has been added for cement and sand.


2019 ◽  
Vol 276 ◽  
pp. 01008
Author(s):  
Fauzan ◽  
Rudy Kurniawan ◽  
Claudia Lovina A. N ◽  
Oscar Fitrah N ◽  
Putri Basenda T

The utilization of steel fiber from waste tyres can be an alternative to reduce waste tyres due to the increase of tyre production in Indonesia annually. Steel fiber from waste tyre can be added to concrete mix to improve the concrete properties. In this study, the effects of steel fiber waste tyre (SFWT) on high strength concrete containing fly ash was investigated experimentally. The content of fly ash in the high strength concrete is 30% of being partially replaced the cement weight. Steel fiber waste tyres are obtained from extracting the steel wire of the waste tyres and then cut into 4 cm long. The addition of SFWT on the high strength fly ash concrete is 0.5%, 1.0%, 1.5%, and 2% by concrete volume. The mechanical properties of concrete such as compressive strength, tensile strength, and flexural strength are tested at day 28. The test results show that the addition of 2 % SFWT on high strength fly ash concrete increase the compressive strength, tensile strength, and flexural strength of the concrete by around 9.99 %, 63.75 %, 18.18 %, respectively.


Fibers ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 93 ◽  
Author(s):  
Yun ◽  
Lim ◽  
Choi

: This paper investigates the effects of the tensile strength of steel fiber on the mechanical properties of steel fiber-reinforced high-strength concrete. Two levels of steel fiber tensile strength (1100 MPa and 1600 MPa) and two steel fiber contents (0.38% and 0.75%) were used to test the compression, flexure, and direct shear performance of steel fiber-reinforced high-strength concrete specimens. The aspect ratio for the steel fiber was fixed at 80 and the design compressive strength of neat concrete was set at 70 MPa to match that of high-strength concrete. The performance of the steel fiber-reinforced concrete that contained high-strength steel fiber was superior to that which contained normal-strength steel fiber. In terms of flexural performance in particular, the tensile strength of steel fiber can better indicate performance than the steel fiber mixing ratio. In addition, a compression prediction model is proposed to evaluate compression toughness, and the model results are compared. The predictive model can anticipate the behavior after the maximum load.


2021 ◽  
Vol 45 (4) ◽  
pp. 351-359
Author(s):  
Noor Alhuda Sami Aljabbri ◽  
Mohammed Noori Hussein ◽  
Ali Abdulmohsin Khamees

Fire or high temperature is a serious issue to ultra-high-strength concrete (UHSC). Strength reduction of UHPCs may amount to as high as 80 percent after exposure to 800℃. A sum of four UHSC mixes was synthesized and evaluated in this study after getting exposed to extreme temperatures that reach 1000°C. Steel and polypropylene (PP) fibers were used in this experiment. A total of four mixes were made of UHSC without fibres as a control mix (UHSC-0), UHSC with 2% steel fibres (UHSC-S), UHSC with 2% PP fibres (UHSC-P) and UHSC with 1% steel fibres + 1% PP fibres (UHSC-SP). Workability, direct tensile strength, compressive strength, and splitting tensile strength were examined. Particularly, emphasis was devoted to explosive spalling since UHPCs are typically of compact structure and hence more prone to explosive spalling than other concretes. It was determined that the mixture UHSC-SP had high fire resistance. Following exposure to 1000℃, this mixture preserved a residual compressive strength of 36 MPa, splitting tensile strength of 1.62 MPa and direct tensile strength of 0.8 MPa. On the other hand, UHSC-P also had good fire resistance while UHSC-0 and UHSC-S experienced explosive spalling after heating above 200ᴼC. The incorporation of steel fibers in UHSC-S and UHSC-SP mixtures reveals higher tensile and compressive strength findings at different elevated temperatures as compared to UHSC-0 and UHSC-P. In addition, the result of direct tensile strength appears to be lower than splitting tensile strength at different raised temperatures.


2010 ◽  
Vol 150-151 ◽  
pp. 996-999
Author(s):  
Chang Wang Yan ◽  
Jin Qing Jia ◽  
Ju Zhang ◽  
Rui Jiang

The marked brittleness with low tensile strength and strain capacities of ultra high strength concrete (UHSC) with compressive strength of 100 MPa can be overcome by the addition of polyvinyl alcohol (PVA) fibers. The compressive strength and splitting tensile strength of ultra high strength concrete containing PVA fibers are investigated this paper. The PVA fibers were added at the volume fractions of 0%, 0.17%, 0.25%, 0.34% and 0.5%. The compressive strength of the PVA fiber reinforced ultra high strength concrete (PFRC) reached a maximum at 0.5% volume fraction, being an 8.2% improvement over the UHSC. The splitting tensile strength of the PFRC improved with increasing the volume fraction, achieving 46.7% improvements at 0.5% volume fraction. The splitting strength models were established to predict the compressive and splitting tensile strengths of the PFRC. The models give predictions matching the measurements.


2014 ◽  
Vol 629-630 ◽  
pp. 112-118
Author(s):  
Juan Yang ◽  
Gai Fei Peng

An experimental investigation on the variation of compressive strength, splitting tensile strength and fracture energy, with the ratios of water to binder (W/B) of ultra-high strength concretes, including the reactive power concrete (RPC) and ultra-high strength concrete with coarse aggregate (UHSC), has been carried out. The W/B varied between 0.14 and 0.22 at a constant increment of 0.02. It was observed that, compressive strength of RPC almost remained the unchanged, when the W/B was between 0.14 and 0.18. However, it decreased dramatically when the ratios were 0.20 and 0.22. For UHSC, the compressive strength was the highest value at the ratio of 0.18. The results of the two concretes could not comply with the Abrams' generalized W/B ratio law. Moreover, splitting tensile strength of RPC and UHSC decreased continually as the ratio increased from 0.14 to 0.22. Fracture energy of RPC was more or less the same when the ratios were between 0.16 and 0.20, and the maximum value was at 0.14. Fracture energy was observed to be almost no variation for UHSC at all ratios


2018 ◽  
Vol 19 (2) ◽  
pp. 30-42
Author(s):  
Md. Nazmul Huda ◽  
Mohd Zamin Jumaat ◽  
A. B. M. Saiful Islam ◽  
Walid A. Al-Kutti

The performance of high strength structural lightweight concrete (LWC) using the palm wastes, oil palm shell (OPS) as well as palm oil clinker (POC) has been reported. Existing literatures used either OPS or POC individually for production of LWC. Each concept has their own advantages-disadvantages. In this study, both OPS and POC have been put together as coarse aggregate on the way to see the improvement of mechanical properties of waste based LWC. To achieve this purpose, regular coarse aggregate has been fully replaced by OPS and POC in the concrete. This structural grade lightweight concrete is named as palm shell and clinker concrete (PSCC). Attempts have been made with the series of OPS and POC mixture aimed at identifying for better performance. The quantity of OPS and POC mix has been varied as 30%, 40%, 50%, 60% and 70%. Mechanical properties of PSCC like density, workability, compressive strength at different ages, flexural strength, splitting tensile strength as well as modulus of elasticity have been evaluated. It is revealed that the proposed PSCC has extensive potential in terms of high compressive strength and good material behavior to perform as a better LWC. The study could offer structural lightweight concrete of compressive strength up to 46 MPa that is 31% higher than the control mix. The usage of 50% OPS to 50% POC coarse aggregate by vol. in the concrete mix is found to be the optimum mix. Furthermore, simple correlations have been developed which can easily predict compressive strength, splitting tensile strength, flexural strength, modulus of elasticity and ultrasonic pulse velocity of lightweight concrete.


Sign in / Sign up

Export Citation Format

Share Document