scholarly journals Design of hybrid power plants (solar module-generator set)

2021 ◽  
Vol 878 (1) ◽  
pp. 012070
Author(s):  
B L Sitorus ◽  
R Samosir ◽  
M D Sebayang

Abstract Hybrid power plant which utilizes the solar module is the primary source and the generator set is the secondary source for backing up the solar module in battery charging in the village of western Meranti. The total energy needed in this village is 14.21 kWh per day and the use of this energy is from 18:00 to 6:00 o’clock. After the calculation is obtained that the capacity of the battery needed to store energy is 731 Ah with a total of 20 batteries capacity of 1 battery 150 Ah 12 V. In this area the average insolation is 4.87 kWh / m2 / day, irradiation hours in this village obtained 4.87 hours a day, then the solar module needed 40 modules with 2 circuits, each series is made 2 series and 10 parallel, the required Solar Charge Controller capacity is a minimum of 68.37 A for 2 units and for the inverter because the maximum load power is 2,880 W, the inverter with a capacity of 4,000 W is chosen and for the Genset to be used is a generator with an output of 4,500 W and a battery charger capacity minimum 54.825 A. The use of generator set is only for charging energy to the battery if the energy inside the battery has reached the planned DOD limit and the cost of electricity produced is Rp4.524,00/kWh.

2019 ◽  
Vol 8 (4) ◽  
pp. 9449-9456

This paper proposes the reliability index of wind-solar hybrid power plants using the expected energy not supplied method. The location of this research is wind-solar hybrid power plants Pantai Baru, Bantul, Special Region of Yogyakarta, Indonesia. The method to determine the reliability of the power plant is the expected energy not supplied (EENS) method. This analysis used hybrid plant operational data in 2018. The results of the analysis have been done on the Pantai Baru hybrid power plant about reliability for electric power systems with EENS. The results of this study can be concluded that based on the load duration curve, loads have a load more than the operating kW of the system that is 99 kW. In contrast, the total power contained in the Pantai Baru hybrid power plant is 90 kW. This fact makes the system forced to release the load. The reliability index of the power system in the initial conditions, it produces an EENS value in 2018, resulting in a total value of 2,512% or 449 kW. The EENS value still does not meet the standards set by the National Electricity Market (NEM), which is <0.002% per year. Based on this data, it can be said that the reliability of the New Coast hybrid power generation system in 2018 is in the unreliable category.


2019 ◽  
Vol 113 ◽  
pp. 02012
Author(s):  
Martina Hohloch ◽  
Melanie Herbst ◽  
Anna Marcellan ◽  
Timo Lingstädt ◽  
Thomas Krummrein ◽  
...  

A hybrid power plant consisting of a micro gas turbine (MGT) and a solid oxide fuel cell (SOFC) is a promising technology to reach the demands for future power plants. DLR aims to set up a MGT/SOFC hybrid power plant demonstrator based on a 3 kWel MTT EnerTwin micro gas turbine and an SOFC module with an electrical power output of 30 kWel from Sunfire. For the detailed investigation of the subsystems under hybrid conditions two separate test rigs are set up, one in which the MGT is connected to an emulator of the SOFC and vice versa. The paper introduces the set-up and the functionalities of the MGT based test rig. The special features are highlighted and the possibilities of the cyber physical system for emulation of a hybrid system are explained.


2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Ramadoni Syahputra ◽  
Indah Soesanti

This paper proposes the planning of hybrid micro-hydro and solar photovoltaic system for rural areas of Central Java, Indonesia. The Indonesian government has paid great attention to the development of renewable energy sources, especially solar and hydropower. One area that has a high potential for both types of energy is the province of Central Java, located on the island of Java, Indonesia. In this research, we conduct field research to determine the ideal capacity of solar and micro-hydro hybrid power plants, electricity load analysis, and optimal design of hybrid power plants. Data on the potential of micro-hydro plants are obtained by direct measurement on the Ancol Bligo irrigation channel located in Bligo village, Ngluwar district, Magelang regency, Central Java province, Indonesia. Data on solar power potential were obtained from NASA’s database for solar radiation in the Central Java region. Hydropower potential data include channel length, debit, heads, and power potential in irrigation channels originating from rivers. These data are used to design an optimal hybrid power plant. The method used to obtain the optimal design of a hybrid power plant system is based on the analysis of capital costs, grid sales, cost of energy, and net present cost. Based on the parameters of the analysis, the composition of the optimal generator for the on-grid scheme to the distribution network can be determined. The results showed that hybrid power plants were able to meet the needs of electrical energy in the villages around the power plant and that the excess energy could be sold to national electricity providers.


2011 ◽  
Vol 1 (4) ◽  
pp. 84-89
Author(s):  
E. A. Al-Ammar ◽  
N. H. Malik ◽  
M. Usman

One of the major world wide concerns of the utilities is to reduce the emissions from traditional power plants by using renewable energy and to reduce the high cost of supplying electricity to remote areas. Hybrid power systems can provide a good solution for such problems because they integrate renewable energy along with the traditional power plants. In Kingdom of Saudi Arabia a remote village called Al-Qtqt, was selected as a case study in order to investigate the ability to use a hybrid power system to provide the village with its needs of electricity. The simulation of this hybrid power system was done using HOMER software.


Author(s):  
Elias Tsoutsanis ◽  
Moussa Hamadache ◽  
Roger Dixon

Abstract Recent expansion of renewable power plants have transformed the role and operation of gas turbines to a great extent. From the base load operation era we are moving into a flexible and dynamic engine operation of gas turbines. In particular, aero derivative engines that have the capacity to start up, shut down in a short time frame are becoming quite popular for both hybrid power plant arrangements and distributed electricity generation. Advances in computational intelligence, such as digital twins, have amplified the importance of condition monitoring, diagnostics and prognostics capabilities in the face of gas turbine operation. Given the dynamic operating profile of the gas turbines, it is of paramount importance to develop, tune and deploy engine models that are accurate and robust to accommodate their nonlinear behavior. Performing diagnostics in transient conditions has recently gained attention, since the gas turbines are acting as partners of renewables and they have a supporting role. Among a family of diagnostics methods, one that has real time capabilities is based on zero-dimensional engine models. This paper present a novel diagnostic approach for determining the health of a gas turbine when it works in conjunction with a wind farm in hybrid power plant. In contrary to our earlier works, where we have mathematically modeled component maps to derive the health of an engine, in this paper we propose a model-based diagnostic method without reconstructing component maps according to their degradation. Once the engine model is initially adapted to its clean condition, it is subsequently tuned in real time to reflect the changes in both the operation and degradation with respect to a benchmark engine model. Time evolving multiple component degradation scenarios for a gas turbine operating in conjunction with a wind farm, are simulated to test the accuracy and efficiency of the proposed method. From a bank of simulated measurements, data trending is performed which facilitates the detection of degradation and provides useful conclusions about the health state of the engine. This diagnostic method is suitable for gas turbines that spend most of their life time in part-load and transient operation and it forms a simple and useful tool for operators in planning their assets maintenance in a computational efficient and accurate manner.


Author(s):  
Anggara Trisna Nugraha ◽  
Dadang Priyambodo

The need for electrical energy in Indonesia continues to increase every year. In line with the increase in the electrification ratio to 100% in 2050, the demand for electrical energy is projected to reach 7 times, namely 1,611 TWh. To meet electricity needs, the government has created a 35 GW program, but one of the largest contributors to power generation fuel is coal with a share of 58% or around 50 GW which is estimated to be exhausted within the next 68 years. For this reason, innovations are needed in terms of fulfilling electrical energy by utilizing renewable energy potential, one of which is hydro energy, which is 45,379 MW from a total resource of 75,091 MW. Therefore, from this potential, innovations related to renewable energy have been created, namely the Hybrid Portable Underwater Turbine Hydro and Solar Energy hybrid power plant. This power plant uses an undersea current as a propulsion which is hybridized with solar power to increase the production of electrical energy. This power plant has the advantage that there is an Underwater turbine design that is resistant to underwater flow and a water flow direction to increase the work efficiency of the underwater turbine. From the test results, the portable Underwater turbine hydro produces 950 W in a day. Solar panels produce 65.6 Watts a day. The total hybrid that can be produced is 1.02 kW a day. In its implementation it can supply loads of up to 900 (VA) such as lamps, fans, TV, etc. This hybrid power plant can be a solution to help meet electricity needs in the area around Dusun Dongol, Sidoarjo through alternative electrical energy innovations.


2019 ◽  
Vol 6 (2) ◽  
pp. 1
Author(s):  
Gordon Arifin Sinaga ◽  
I Made Mataram ◽  
Tjok Gede Indra Partha

Renewable energy is energy that comes from natural processes that will not be exhausted and sustainable if managed properly. In its use, to maintain the continuity of the availability of electrical energy maximally, it is necessary to combine several types of power plants that are connected to the grid or better known as hybrid grid connected power systems. This research took place at Villa Peruna Saba, Gianyar - Bali which uses a hybrid grid connected power system that combines photovoltaics and generators connected to the grid utilty in supplying electricity loads. The analysis is carried out on the characteristics of the average load, the contribution of each electric power source and the workings of the hybrid grid connected hybrid power plant system. From the analysis, it is known that the contribution of power derived from solar power plants is 561.27 kW or 22.41% in April 2018 and 510.72 kW or 20.71% in May 2018.


Author(s):  
James Spelling ◽  
Björn Laumert

The hybridization of combined-cycle power plants with solar energy is an attractive means of reducing carbon dioxide (CO2) emissions from gas-based power generation. However, the construction of the first generation of commercial hybrid power plants will present the designer with a large number of choices. To assist decision making, a thermo-economic study has been performed for three different hybrid power plant configurations, including both solar thermal and photovoltaic hybridization options. Solar photovoltaic combined-cycle (SPVCC) power plants were shown to be able to integrate up to 63% solar energy on an annual basis, whereas hybrid gas turbine combined-cycle (HGTCC) systems provide the lowest cost of solar electricity, with costs only 2.1% higher than a reference, unmodified combined-cycle power plant. The integrated solar combined-cycle (ISCC) configuration has been shown to be economically unattractive.


2021 ◽  
Vol 13 (4) ◽  
pp. 296-303
Author(s):  
B. D. Gemechu ◽  
M. E. Orlov

This paper presents a techno-economic assessment of a hybrid solar-geothermal power plant that is modelled taking into account the available geothermal and solar energy resources at the Tendaho-1 (Dubti) geothermal field in Ethiopia. The hybrid power plant combines a single-flash geothermal power plant with a parabolic trough solar thermal plant to increase the energy level of geothermal steam. The geothermal fluid from one of the production wells at the geothermal site and the direct normal solar irradiance prevailing in the area offer the primary sources of energy used in the modelling. A thermodynamic analysis based on the principles of mass and energy conservation and a figure of merit analysis that allows evaluating the energy and economic performance of the hybrid power plant were performed. The technical and economic efficiency assessment was performed by comparing the performances of the hybrid power plant with a power system consisting of stand-alone geothermal and solar power plants. Results of the techno-economic assessment showed that for the same amount of energy inputs, depending on the available thermal energy storage capacity, a hybrid power plant generates up to 10.4% more electricity than a power system of two stand-alone power plants while generating a higher net present value at a lower cost of generation. In addition, the hybrid power plants with and without thermal storage system exhibit an economic figure of merit values of 2.62 and 3.42, i.e. the cost of solar resource per kWh of electricity in the hybrid energy system is reduced by 70.5% and 61.5%, respectively.


Sign in / Sign up

Export Citation Format

Share Document