scholarly journals Preparation of carbon anode sheet precursor using raw Air Laya–Bukit Asam coal and its application for battery

2021 ◽  
Vol 882 (1) ◽  
pp. 012040
Author(s):  
A T Mursito ◽  
L N Listiyowati ◽  
D N Arifin ◽  
D B Santoso ◽  
M D S Wicaksono

Abstract Research has been carried out on manufacturing carbon electrode thin sheets used as anode for solid battery cells. The material used is raw coal carbonized at 800 and 1000oC, polyvinylidene fluoride (PVDF), and N-Dimethylacetamide (DMAC) as a solvent. Observation of crystal structure by X-rays diffraction method shows a diffraction pattern where crystallites in all product samples have an intermediate structure between graphite and amorphous known as a turbostratic structure or a random layer lattice structure. The distance between the crystallite structure’s aromatic layers (d002) is in the range 3.52-3.62 Å. Aromaticity (fa) is in the range 0.42 - 0.48 for all samples. The high value of d002 indicated that the crystallinity or level of graphitization obtained by all samples was still low. Manufacturing technique using a Doctor Blade-based tape casting method. The discharge capacities of the samples reach about 60 and 18 mAh.g-1, while their charge capacities at the first cycle are 50 and 16 mAh.g1, respectively. Cyclic voltammetry (CV) was performed using anodes resulted at 0.1 to 2.3 volt. During the forward scan, CV curves of the sample reveal a reduction current starting from around 1.2 V and exhibiting two-reduction waves, between 1.2 and 0.6 V.

Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 140
Author(s):  
Lichen Liu ◽  
Ziping Cao ◽  
Min Chen ◽  
Jun Jiang

This paper reports the fabrication and characterization of (Bi0.48Sb1.52)Te3 thick films using a tape casting process on glass substrates. A slurry of thermoelectric (Bi0.48Sb1.52)Te3 was developed and cured thick films were annealed in a vacuum chamber at 500–600 °C. The microstructure of these films was analyzed, and the Seebeck coefficient and electric conductivity were tested. It was found that the subsequent annealing process must be carefully designed to achieve good thermoelectric properties of these samples. Conductive films were obtained after annealing and led to acceptable thermoelectric performance. While the properties of these initial materials are not at the level of bulk materials, this work demonstrates that the low-cost tape casting technology is promising for fabricating thermoelectric modules for energy conversion.


2021 ◽  
Vol 44 (2) ◽  
Author(s):  
Prerna Chaturvedi ◽  
Amarsingh Bhabu Kanagaraj ◽  
Amani Alhammadi ◽  
Hamda Al Shibli ◽  
Daniel S Choi

2010 ◽  
Vol 43 (2) ◽  
pp. 341-346 ◽  
Author(s):  
Yu Kitago ◽  
Nobuhisa Watanabe ◽  
Isao Tanaka

Use of longer-wavelength X-rays has advantages for the detection of small anomalous signals from light atoms, such as sulfur, in protein molecules. However, the accuracy of the measured diffraction data decreases at longer wavelengths because of the greater X-ray absorption. The capillary-top mounting method (formerly the loopless mounting method) makes it possible to eliminate frozen solution around the protein crystal and reduces systematic errors in the evaluation of small anomalous differences. However, use of this method requires custom-made tools and a large amount of skill. Here, the development of a device that can freeze the protein crystal semi-automatically using the capillary-top mounting method is described. This device can pick up the protein crystal from the crystallization drop using a micro-manipulator, and further procedures, such as withdrawal of the solution around the crystal by suction and subsequent flash freezing of the protein crystal, are carried out automatically. This device makes it easy for structural biologists to use the capillary-top mounting method for sulfur single-wavelength anomalous diffraction phasing using longer-wavelength X-rays.


In the present paper we shall attempt to collate the results of four separate lines of research which, taken together, appear to provide some interesting checks between theory and experiment. The investigations to be considered are (1) the discussion by Waller* and by Wentzel,† on the basis of the quantum (wave) mechanics, of the scattering of radiation by an atom ; (2) the calculation by Hartree of the Schrödinger distribution of charge in the atoms of chlorine and sodium ; (3) the measurements of James and Miss Firth‡ of the scattering power of the sodium and chlorine atoms in the rock-salt crystal for X-rays at a series of temperatures extending as low as the temperature of liquid air ; and (4) the theoretical discussion of the temperature factor of X-ray reflexion by Debye§ and by Waller.∥ Application of the laws of scattering to the distribution of charge calculated for the sodium and chlorine atoms, enables us to calculate the coherent atomic scattering for X-radiation, as a function of the angle of scattering and of the wave-length, for these atoms in a state of rest, assuming that the frequency of the X-radiation is higher than, and not too near the frequency of the K - absorption edge for the atom.¶ From the observed scattering power at the temperature of liquid air, and from the measured value of the temperature factor, we can, by applying the theory of the temperature effect, calculate the scattering power at the absolute zero, or rather for the atom reduced to a state of rest. The extrapolation to a state of rest will differ according to whether we assume the existence or absence of zero point energy in the crystal lattice. Hence we may hope, in the first place to test the agreement between the observed scattering power and that calculated from the atomic model, and in the second place to see whether the experimental results indicate the presence of zero-point energy or no.


1968 ◽  
Vol 1 (2) ◽  
pp. 177-216 ◽  
Author(s):  
Jean Hanson

An intact living muscle has such a regular structure that it diffracts light or X-rays, thereby providing patterns that contain uniquely valuable information. Interpretation of these patterns is not straightforward, but is helped by light microscopy and electron microscopy, which can often provide similar though less reliable information. At all levels of complexity, from that of the fibrils to that of the molecules, structure in a muscle is orderly. No other natural cell assembly is so suited to study by the diffraction method, and the results obtained in recent years are an outstanding example of how this method can elucidate a biological problem. In contrast to protein crystallography, where the system studied is artificial, muscle can be examined in its natural state, during normal activity. The levels of structure explored as yet in muscle are above that of the atoms in the molecules. Such structure is more commonly investigated by electron microscopy, and the application of the diffraction method to living muscle has provided a valuable check on the preparative artifacts that worry the microscopist. The great complexity of a muscle, as compared with a protein crystal, and the fact that the system is only semi-crystalline, giving a much less detailed diffraction pattern, make the problems of interpretation especially difficult. But a great deal of useful information is available about other properties of muscle and its constituents, and the flourishing state of muscle biology at present is a major factor contributing to the successful application of the diffraction method.


2020 ◽  
Author(s):  
Chong Zhao ◽  
Yingkui Li ◽  
Xiaofei Shen ◽  
Zhijun Cao ◽  
Zhiquan Cao ◽  
...  

Abstract Pure phase Y3Fe5O12 (YIG) ceramics was successfully produced by tape-casting forming process and one-step solid-state reaction method. With the sintering temperature above 1100 ºC, the pure phase YIG ceramics was synthesized with no YIP or Fe2O3 phase in XRD patterns. YIG ceramic sintering at 1400 ºC for 10 h showed a clear grain structure with an obvious grain boundary, and no pores were observed in the SEM images. YIG ceramics in this paper has a high relative density which was 99.8% and the saturation magnetization was 28.2 emu/g at room temperature. The hysteresis loss at temperatures of 230-360 K was smaller than 10 mJ/kg. The tan Se was nearly zero at 6~7 GHz and 11~12 GHz, showing that it can be used as a good material for microwave applications. In addition, the low values of tan and tan indicates that it may have a good electromagnetic wave absorption ability.


2015 ◽  
Vol 33 (1) ◽  
pp. 157-162 ◽  
Author(s):  
P. K. Mahato ◽  
A. Seal ◽  
S. Garain ◽  
S. Sen

AbstractThe effect of different fabrication techniques on the formation of electroactive β-phase polyvinylidene fluoride (PVDF) has been investigated. Films with varying concentration of PVDF and solvent - dimethyl formamide (DMF) were synthesized by tape casting and solvent casting techniques. The piezoelectric β-phase as well as non polar β-phase were observed for both the tape cast and solvent cast films from X-ray diffraction (XRD) micrographs and Fourier transform infra-red spectroscopy (FT-IR) spectra. A maximum percentage (80 %) of β-phase was obtained from FT-IR analysis for a solvent cast PVDF film. The surface morphology of the PVDF films was analyzed by FESEM imaging. The dielectric properties as a function of temperature and frequency and the ferroelectric hysteresis loop as a function of voltage were measured. An enhancement in the value of the dielectric constant and polarization was obtained in solvent cast films.


2012 ◽  
Vol 38 (3) ◽  
pp. 2125-2128 ◽  
Author(s):  
Z.H. Luo ◽  
D.L. Jiang ◽  
J.X. Zhang ◽  
Q.L. Lin ◽  
Z.M. Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document