scholarly journals Correlation of normalized difference water index and baseflow index in small island watershed landscapes

2021 ◽  
Vol 883 (1) ◽  
pp. 012072
Author(s):  
B Latuamury ◽  
M Talaohu ◽  
F Sahusilawane ◽  
W N Imlabla

Abstract The utilization of remote sensing data in the field of environmental hydrology is experiencing rapid progress. The Normalized Difference Water Index (NDWI) approach to transforming the water content of various land cover types and its implications for small island watersheds' hydrological characteristics is essential. NDWI is an algorithm used to detect water bodies, with the capacity to absorb visible and infrared wavelengths strongly. This study aims to analyze the correlation between the NDWI water index and the BFI baseflow index in the small island landscape of Ambon City. The Landsat 7 ETM + and Landsat 8 OLI image processing methods use ENVI 5.3 software to transform the NDWI algorithm and the BFI + 3.0 digital recursive filtering (RDF) method for hydrological characterization. The results showed that there was a strong correlation between the NDWI water index and the baseflow index (BFI) for the small island watershed of Ambon city. This result is relevant to the geographic area of Ambon City, which is dominated by the ocean 95% and land area 5%, so the application of the NDWI water index and the hydrological conditions of small island watersheds are significant.

Author(s):  
Thu Trang Hoang ◽  
Khoi Nguyen Dao ◽  
Loi Thi Pham ◽  
Hong Van Nguyen

The objective of this study was to analyze the changes of riverbanks in Ho Chi Minh City for the period 1989-2015 using remote sensing and GIS. Combination of Modified Normalized Difference Water Index (MNDWI) and thresholding method was used to extract the river bank based on the multi-temporal Landsat satellite images, including 12 Landsat 4-5 (TM) images and 2 Landsat 8 images in the period 1989-2015. Then, DSAS tool was used to calculate the change rates of river bank. The results showed that, the processes of erosion and accretion intertwined but most of the main riverbanks had erosion trend in the period 1989-2015. Specifically, the Long Tau River, Sai Gon River, Soai Rap River had erosion trends with a rate of about 10.44 m/year. The accretion process mainly occurred in Can Gio area, such as Dong Tranh river and Soai Rap river with a rate of 8.34 m/year. Evaluating the riverbank changes using multi-temporal remote sensing data may contribute an important reference to managing and protecting the riverbanks.


Author(s):  
Nanin Anggraini ◽  
Sartono Marpaung ◽  
Maryani Hartuti

Besides to the effects from tidal, coastline position changed due to abrasion and accretion. Therefore, it is necessary to detect the position of coastline, one of them by utilizing Landsat data by using edge detection and NDWI filter. Edge detection is a mathematical method that aims to identify a point on a digital image based on the brightness level. Edge detection is used because it is very good to present the appearance of a very varied object on the image so it can be distinguished easily. NDWI is able to separate land and water clearly, making it easier for coastline analysis. This study aimed to detect coastline changes in Ujung Pangkah of Gresik Regency caused by accretion and abrasion using edge detection and NDWI filters on temporal Landsat data (2000 and 2015). The data used in this research was Landsat 7 in 2000 and Landsat 8 in 2015. The results showed that the coastline of Ujung Pangkah Gresik underwent many changes due to accretion and abrasion. The accretion area reached 11,35 km2 and abrasion 5,19 km2 within 15 year period. Abstrak Selain akibat adanya pasang surut, posisi garis pantai berubah akibat adanya abrasi dan akresi. Oleh karena itu diperlukan adanya deteksi posisi garis pantai, salah satunya dengan memanfaatkan data Landsat dengan menggunakan filter edge detection dan NDWI. Edge detection adalah suatu metode matematika yang bertujuan untuk mengidentifikasi suatu titik pada gambar digital berdasarkan tingkat kecerahan. Filter edge detection digunakan karena sangat baik untuk menyajikan penampakan obyek yang sangat bervariasi pada citra sehingga dapat dibedakan dengan mudah. NDWI mampu memisahkan antara daratan dan perairan dengan jelas sehingga memudahkan untuk analisis garis pantai. Penelitian ini bertujuan untuk deteksi perubahan garis pantai di Ujung Pangkah Kabupaten Gresik yang disebabkan oleh adanya akresi dan abrasi dengan menggunakan filter edge detection dan NDWI pada data Landsat temporal (tahun 2000 dan 2015). Data yang digunakan pada penelitian ini adalah citra Landsat 7 tahun 2000 dan Landsat 8 tahun 2015. Hasil penelitian menunjukkan bahwa garis pantai di Ujung Pangkah Gresik banyak mengalami perubahan akibat adanya akresi dan abrasi. Luas akresi mencapai 11,35 km2 dan abrasi 5,19 km2 dalam periode waktu 15 tahun.


2019 ◽  
Vol 3 ◽  
pp. 911
Author(s):  
Karunia Pasya Kusumawardani ◽  
Zulfian Isnaini Cahya ◽  
Wahyu Hendardi Giri Ananto ◽  
Galuh Hayun Mustika Asri

Pesisir Kabupaten Kabupaten Lombok Barat dan Kota Mataram merupakan wilayah rawan bencana dan perubahan garis pantai. Dalam 10 tahun terakhir telah terjadi abrasi sehingga pada tahun 2007 dibangun tanggul pemecah gelombang di sebagian pesisir Ampenan. Abrasi semakin parah terjadi pada dua tahun terkahir yaitu tahun 2017 dan 2018. Abrasi pantai terjadi di sepanjang Pantai Ampenan seperti di Kelurahan Bintaro sampai Mapak Indah (Radar Lombok, 2017). Penelitian bertujuan untuk memetakan garis pantai dan menganalisis perubahan garis pantai di sebagian pesisir Kabupaten Lombok Barat dan Kota Mataram. Data yang digunakan adalah data citra multitemporal yaitu citra Landsat 7 ETM+ tahun 2003 dan citra Landsat 8 OLI tahun 2018. Metode yang digunakan untuk memetakan garis pantai adalah transformasi indeks yaitu Normalized Difference Water Index (NDWI) dan filter highpass. Algoritma NDWI dapat digunakan untuk mengidentifikasi tubuh air. Transformasi NDWI pada penelitian digunakan untuk membedakan wilayah daratan dan perairan. Algoritma NDWI melibatkan band hijau dan band inframerah dekat yaitu dengan rumus NDWI = Green-NIR/Green+NIR. Pengujian model dilakukan dengan citra resolusi tinggi yaitu citra Planet dengan resolusi 3 meter. Output terdiri atas peta garis pantai tahun 2003 dan 2018 dengan skala 1: 125.000. Hasil pengujian peta garis pantai dengan citra resolusi tinggi menghasilkan nilai mean sebesar 14.972 m dengan standar deviasi sebesar 5.106 m. Perubahan garis pantai di sebagian pesisir Lombok Barat disebabkan karena adanya abrasi oleh kecepatan arus yang tinggi dan durasinya yang lama serta akresi yang disebabkan sedimentasi material dari 7 sungai di wilayah Ampenan Tengah, Ampenan Selatan, Loang Baloq, Labu Api, dan Gerung.


2020 ◽  
Vol 183 ◽  
pp. 02004
Author(s):  
Tarik El Orfi ◽  
Mohamed El Ghachi ◽  
Sébastien Lebaut

The OumErRbiabasin is one of the watersheds with the largest number of hydraulic infrastructures in Morocco. These hydraulic structuressupply water for drinking, industrial and agricultural uses. The Ahmed El Hansali dam is a 740 Mm³ reservoir located near Zaouyat Cheikh andhave an active storage of473 Mm³. The succession of dry years in the OumErRbiabasin has had a negative impact on the water resource and has caused a remarkable decrease in the reservoir of the Ahmed el Hansali dam. In this paper, the MNDWI (Modified Normalized Difference Water Index) from Landsat 5-TM, Landsat 7-ETM, and Landsat 8-OLI satellite images was used to estimate the spatial and temporal fluctuations of the volumes of water stored in the reservoir between hydrological years 2002-03 and 2018-19. Results show that the volumes estimated by remote sensing reasonably match the volumes estimated by the OumErRbia Hydraulic Basin Agency (OERHBA)using recorded water levels and reservoir storage curve for years 2002-03 and 2013-14; the determination coefficient R² exceeds 0.90. The mapping of the extent of the dam’s impoundment has shown a very significant decreasein the flooded area level during dry years.


2020 ◽  
Vol 1 (135) ◽  
pp. 67-78
Author(s):  
Ismael Abbas Hurat

This paper analyzes the effects of urban density, vegetation cover, and water body on thermal islands measured by land surface temperature in Al Anbar province, Iraq using multi-temporal Landsat images. Images from Landsat 7 ETM and Landsat 8 OLI for the years 2000, 2014, and 2018 were collected, pre-processed, and anal yzed. The results suggested that the strongest correlation was found between the Normalized Difference Built-up Index (NDBI) and the surface temperature. The correlation between the Normalized Difference Vegetation Index (NDVI) and the surface temperature was slightly weaker compared to that of NDBI. However, the weakest correlation was found between the Normalized Difference Water Index (NDWI) and the temperature. The results obtained in this research may help the decision makers to take actions to reduce the effects of thermal islands by looking at the details in the produced maps and the analyzed values of these spectral indices.


2019 ◽  
Vol 18 (4) ◽  
pp. 339-349
Author(s):  
Tran Anh Tuan ◽  
Le Dinh Nam ◽  
Nguyen Thi Anh Nguyet ◽  
Pham Viet Hong ◽  
Nguyen Thi Ai Ngan ◽  
...  

The paper presents results of analysis of water indices using remote sensing data to extract an instantaneous shoreline at the time of image acquisition on the southwest coast of Vietnam. The water indices as NDWI (Normalized Difference Water Index), MNDWI (Modified Normalized Difference Water Index), and AWEI (Automated Water Extraction Index) were calculated from Landsat 8 OLI imagery. Then, an extracted distribution histogram of water indices’ values in the study area was used to separate the land from the sea. The position having abnormal frequency of pixels on the histogram is the threshold value to determine the boundary of land and water, and it is considered the shoreline. The study showed the threshold values of NDWI, MNDWI and AWEI which were defined at 0.12, 0.17 and 0.18 respectively. The precision of shoreline extraction from each respective water index was verified by field survey data using Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) methods. The verified results showed that MAE and MSE of the shorelines extracted from all three water indices were lower than an allowed limit of 30 m (equivalent to spatial resolution of the Landsat 8 image). However, the shoreline extracted from AWEI had the highest accuracy and it was considered the most appropriate shoreline at the acquisition time of image.


2018 ◽  
Vol 11 (1-2) ◽  
pp. 45-51 ◽  
Author(s):  
Muhannad Hammad ◽  
László Mucsi ◽  
Boudewijn van Leeuwen

Abstract Land cover change and deforestation are important global ecosystem hazards. As for Syria, the current conflict and the subsequent absence of the forest preservation are main reasons for land cover change. This study aims to investigate the temporal and spatial aspects and trends of the land cover alterations in the southern Syrian coastal basins. In this study, land cover maps were made from surface reflectance images of Landsat-5(TM), Landsat-7(ETM+) and Landsat-8(OLI) during May (period of maximum vegetation cover) in 1987, 2002 and 2017. The images were classified into four different thematic classes using the maximum likelihood supervised classification method. The classification results were validated using 160 validation points in 2017, where overall accuracy was 83.75%. Spatial analysis was applied to investigate the land cover change during the period of 30 years for each basin and the whole study area. The results show 262.40 km2 reduction of forest and natural vegetation area during (1987-2017) period, and 72.5% of this reduction occurred during (2002-2017) period due to over-cutting of forest trees as a source of heating by local people, especially during the conflict period. This reduction was particularly high in the Alabrash and Hseen basins with 76.13 and 79.49 km2 respectively, and was accompanied by major increase of agriculture lands area which is attributed to dam construction in these basins which allowed people to cultivate rural lands for subsistence or to enhance their economic situation. The results of this study must draw the relevant authorities’ attention to preserve the remaining forest area.


Author(s):  
M. Moradi ◽  
M. Sahebi ◽  
M. Shokri

Water is one of the most important resources that essential need for human life. Due to population growth and increasing need of human to water, proper management of water resources will be one of the serious challenges of next decades. Remote sensing data is the best way to the management of water resources due time and cost effectiveness over a greater range of temporal and spatial scales. Between many kinds of satellite data, from SAR to optic or from high resolution to low resolution, Landsat imagery is more interesting data for water detection and management of earth surface water. Landsat8 OLI/TIRS is the newest version of Landsat satellite series. In this paper, we investigated the full spectral potential of Landsat8 for water detection. It is developed many kinds of methods for this purpose that index based methods have some advantages than other methods. Pervious indices just use a limited number of spectral band. In this paper, Modified Optimization Water Index (MOWI) defined by consideration of a linear combination of bands that each coefficient of bands calculated by particle swarm algorithm. The result shows that modified optimization water index (MOWI) has a proper performance on different condition like cloud, cloud shadow and mountain shadow.


Water ◽  
2017 ◽  
Vol 9 (4) ◽  
pp. 256 ◽  
Author(s):  
Yan Zhou ◽  
Jinwei Dong ◽  
Xiangming Xiao ◽  
Tong Xiao ◽  
Zhiqi Yang ◽  
...  

Open surface water bodies play an important role in agricultural and industrial production, and are susceptible to climate change and human activities. Remote sensing data has been increasingly used to map open surface water bodies at local, regional, and global scales. In addition to image statistics-based supervised and unsupervised classifiers, spectral index- and threshold-based approaches have also been widely used. Many water indices have been proposed to identify surface water bodies; however, the differences in performances of these water indices as well as different sensors on water body mapping are not well documented. In this study, we reviewed and compared existing open surface water body mapping approaches based on six widely-used water indices, including the tasseled cap wetness index (TCW), normalized difference water index (NDWI), modified normalized difference water index (mNDWI), sum of near infrared and two shortwave infrared bands (Sum457), automated water extraction index (AWEI), land surface water index (LSWI), as well as three medium resolution sensors (Landsat 7 ETM+, Landsat 8 OLI, and Sentinel-2 MSI). A case region in the Poyang Lake Basin, China, was selected to examine the accuracies of the open surface water body maps from the 27 combinations of different algorithms and sensors. The results showed that generally all the algorithms had reasonably high accuracies with Kappa Coefficients ranging from 0.77 to 0.92. The NDWI-based algorithms performed slightly better than the algorithms based on other water indices in the study area, which could be related to the pure water body dominance in the region, while the sensitivities of water indices could differ for various water body conditions. The resultant maps from Landsat 8 and Sentinel-2 data had higher overall accuracies than those from Landsat 7. Specifically, all three sensors had similar producer accuracies while Landsat 7 based results had a lower user accuracy. This study demonstrates the improved performance in Landsat 8 and Sentinel-2 for open surface water body mapping efforts.


2018 ◽  
Vol 14 (1) ◽  
pp. 160-171
Author(s):  
Zahra Ghofrani ◽  
Victor Sposito ◽  
Robert Faggian

Abstract Precise information on the extent of inundated land is required for flood monitoring, relief, and protective measures. In this paper, two spectral indices, Normalized Difference Water Index (NDWI) and Modified Normalized Difference Water Index (MNDWI), were used to identify inundated areas during heavy rainfall events in the Tarwin catchment, Victoria, Australia, using Landsat-8 OLI imagery. By integrating the assessed condition of levees, this research also explains the inefficiency of the flood control measures of this region of Australia. NDWI and MNDWI indices performed well, but water features were enhanced better in the NDWI-derived image, with an accuracy of 96.04% and Kappa coefficient of 0.83.


Sign in / Sign up

Export Citation Format

Share Document