scholarly journals Traffic Study and Analysis of Highway (NH5) from Balongi to Kharar

2021 ◽  
Vol 889 (1) ◽  
pp. 012054
Author(s):  
Tarun Sharma ◽  
Sandeep Singh

Abstract Evaluation of in service pavements is very vital for keeping them in good serviceable condition because pavements deteriorate with age and traffic loading. To get a complete idea of the existing condition of any pavement both structural and functional evaluation are necessary. This study aims to investigate the accidental spots, traffic volume, and pavement condition. For this survey, the location of Kharar was chosen i.e. Balongi to Kharar Bus-Stand of 7 km stretch. The road initiates with intersection near Kharar bus stand and passes through many in between intersections near Sunny Enclave, VR Punjab Mall which are prime locations in that area. This road also connects with T junction and connects to NH5 / NH7 via Airport road. The data collected was processed, categorized and analyzed to generate reports for vehicle classification, hourly traffic variation, accidental black spots, pavement condition and origin & destination of trips.

2018 ◽  
Vol 7 (1) ◽  
pp. 51-60
Author(s):  
Fitri Wulandari ◽  
Nirwana Puspasari ◽  
Noviyanthy Handayani

Jalan Temanggung Tilung is a 2/2 UD type road (two undirected two-way lanes) with a road width of 5.5 meters, which is a connecting road between two major roads, namely the RTA road. Milono and the path of G. Obos. Over time, the volume of traffic through these roads increases every year, plus roadside activities that also increase cause congestion at several points of the way. To overcome this problem, the local government carried out road widening to increase the capacity and level of road services. The study was conducted to determine the amount of traffic volume, performance, service level of the Temanggung Tilung road section at peak traffic hours before and after road widening. Data retrieval is done by the direct survey to the field to obtain primary data in the form of geometric road data, two-way traffic volume data, and side obstacle data. Performance analysis refers to the 1997 Indonesian Road Capacity Manual (MKJI) for urban roads. From the results of data processing, before increasing the road (Type 2/2 UD), the traffic volume that passes through the path is 842 pcs/hour and after road widening (Type 4/2 UD) the traffic volume for two directions is 973 pcs/hour, with route A equaling 528 pcs/hour and direction B equaling 445 pcs/hour. Based on the analysis of road performance before road enhancement, the capacity = 2551 pcs/hour, saturation degree = 0.331, and the service level of the two-way road are level B. Based on the analysis of the performance of the way after increasing the way, the direction capacity A = 2686 pcs/hour and direction B = 2674 pcs /hour, saturation degree for direction A = 0.196 and direction B = 0.166, service level for road direction A and direction B increase to level A


2021 ◽  
Vol 13 (12) ◽  
pp. 2329
Author(s):  
Elżbieta Macioszek ◽  
Agata Kurek

Continuous, automatic measurements of road traffic volume allow the obtaining of information on daily, weekly or seasonal fluctuations in road traffic volume. They are the basis for calculating the annual average daily traffic volume, obtaining information about the relevant traffic volume, or calculating indicators for converting traffic volume from short-term measurements to average daily traffic volume. The covid-19 pandemic has contributed to extensive social and economic anomalies worldwide. In addition to the health consequences, the impact on travel behavior on the transport network was also sudden, extensive, and unpredictable. Changes in the transport behavior resulted in different values of traffic volume on the road and street network than before. The article presents road traffic volume analysis in the city before and during the restrictions related to covid-19. Selected traffic characteristics were compared for 2019 and 2020. This analysis made it possible to characterize the daily, weekly and annual variability of traffic volume in 2019 and 2020. Moreover, the article attempts to estimate daily traffic patterns at particular stages of the pandemic. These types of patterns were also constructed for the weeks in 2019 corresponding to these stages of the pandemic. Daily traffic volume distributions in 2020 were compared with the corresponding ones in 2019. The obtained results may be useful in terms of planning operational and strategic activities in the field of traffic management in the city and management in subsequent stages of a pandemic or subsequent pandemics.


2007 ◽  
Vol 42 (4) ◽  
pp. 229-238 ◽  
Author(s):  
M. Figurski ◽  
M. Gałuszkiewicz ◽  
M. Wrona

A Bridge Deflection Monitoring with GPSThis paper introduces results of investigation carried on by The Applied Geomatics Section in Military University of Technology. Research includes possibilities of monitoring dynamic behavior of a bridge using high rate GPS data. Whole event was executed with collaboration of The Road and Bridge Management and The Warsaw Geodesy Company. Interdisciplinary approach with this project allows authors to get reliable information about investigating constructions and their respond for true traffic loading detected by GPS receivers. Way of compute data and used software (TRACK) are also shown in this paper.


Transport ◽  
2010 ◽  
Vol 25 (3) ◽  
pp. 244-251 ◽  
Author(s):  
Laura Žiliūtė ◽  
Alfredas Laurinavičius ◽  
Audrius Vaitkus

The measurements and analysis of traffic intensity were performed in the capital city – Vilnius, the largest urban area in Lithuania. Vilnius is a centre of business, industry and tourism, and therefore traffic intensity remains the highest in this part of the country. The intensity of vehicle traffic is not only generally calculated but also simultaneously classified which means is divided predefining vehicles into beforehand established categories. Data on traffic flows are used in a road maintenance program for calculating and assessing air pollution, ensuring traffic safety, regulating traffic flows etc. The article presents the methods for measuring traffic intensity which are and were used for calculating traffic intensity not only in the streets of Vilnius but also across Lithuania. Data on vehicle intensity and classification are collected either using technologies (loop and tube detectors, counters and video detectors) or expressing them visually. The article presents the dynamics of changes in the traffic volume on the roads of Lithuania for the period 2000–2009. Also, this article examines traffic intensity of all transport means, including trucks in the permanent traffic volume measuring stations that were installed near the roads in Vilnius zone (data on traffic for the period 2005–2009) and the streets of Vilnius city (data on traffic for the period 2007–2009). Data on traffic intensity were obtained by the Road Research Laboratory of the Road Department of Vilnius Gediminas Technical University in cooperation with the State Enterprise Transport and Road Research Institute (TRRI).


2015 ◽  
Vol 9 (2) ◽  
pp. 114
Author(s):  
Supiyono, Dwi Ratnaningsih, Rudy Ariyanto

Progress of a country in line with the progress of traffic (transport). Fluency in traffic is determined by the smoothness of traffic on the road. Problems often arise on the highway is congestion at the intersection. Neither was signalized intersections and signalized intersections. Problems at the intersection is less accuracy green flame at the intersection with the number of vehicles in a segment. A road with high traffic volume vehicle green flame low while other road traffic volume small green flame length. So in a long queue roads, while other roads are deserted while still green flame.     This study aims to minimize the occurrence of conflic at the intersection of green flame. Research will make iterations in the intersection, where a road section which will be nominated densely green flame, the flame of the green according to the volume of traffic on these roads. Each road will be a green flame in accordance with the volume of traffic, without having to change any program there is a change in traffic volume.The degree of saturation of the calculation obtained by ....Keywords: roads, hight traffic, progressive intersection, degree saturation


Author(s):  
C. C. Osadebe ◽  
H. A. Quadri

The prevalence of flexible pavement deterioration in the country has been adduced largely by highway researchers to trucks or heavy vehicles carrying much in excess of permitted legal limits. This study investigated levels of deterioration of Abuja-Kaduna-Kano road (Northern region) and Port Harcourt-Enugu road (Southern region) caused by heavy vehicles through a 14 day traffic counts conducted at 5 strategic points each in the Northern and Southern regions. Traffic data generated were analyzed with AASHTO Design Guidelines (1993) to evaluate Equivalent Single Axle Loads (ESALs) and Vehicle Damage effects on the road. The Traffic Volume, Average Daily Traffic (ADT), and Heavy Vehicle per day (HV/day) were estimated to be 2,063,977; 147,427; and 12,246 respectively in the Northern region, while in the Southern region they were estimated to be 750,381; 53,670; and 20,951 respectively. Motorcycles, Passenger cars, Mini-buses/Pick-ups, and Heavy vehicles constitute 18.7%, 49.7%, 23.3% and 8.31% of the total traffic volume respectively in the Northern region while in the South they constitute 4.6%, 30.1%, 26.2% and 39.1% respectively. ESALs were estimated according to AASHTO Design Guidelines in the Northern and Southern regions as 547,730 and 836,208 respectively. An average Load Equivalency Factors (LEFs) of 3.43 and 3.02 were estimated for each heavy vehicle plying the Northern and Southern roads respectively and this could explain some failures (alligator cracks, potholes, depressions, linear or longitudinal cracks along the centre line amongst others) inherent on the road.


2018 ◽  
Vol 1 (3) ◽  
pp. 667-678
Author(s):  
Mulyadi Mulyadi ◽  
Muhammad Isya ◽  
Sofyan M. Saleh

Abstract: Blangkejeren - Lawe Aunan road conditions overall is on the slopes of the mountains which is strongly influenced by local environmental factors such as drainage, topography, soil conditions, material conditions and vehicle load conditions across the road. It should be noted in order to avoid a decrease in the road quality due to road surface damage that can affect the traffic safety, comfort and smoothness.. Therefore, it is necessary to study the evaluation of the condition of the damaged road surface and the local factors that affect the damage in order to avoid a decrease in the roads quality. This study took place on Blangkejeren - Lawe Aunan roads started from Sta. 529 + 700 - Sta. 535 + 206. Generally, the condition of roads in this segment were found damage that disturb the comfort, smoothness and safety of the roads users. In this study, the primary data obtained by actual surveys in the form of data field length, width, area, and depth of each type of damage as well as local factors that lead to such damage. Actual field surveys conducted along the 5.506 km, with the distance interval of each segment is 100 m. The secondary data obtained from the relevant institutions and other materials related to this research. This study analyzed the PCI method (Pavement Condition Index) to obtain the level of damage in order to know how to handle, while for the identification of the damage done by observation factors descriptively appropriate observation in the field such as the number of damage points. The results of this study found that the type of damage caused to roads is damage to the cover layer, a hole, and curly. This type of damage that commonly occurs on the road Blangkejeren - Lawe Aunan is damage to the edges with a percentage of 87.30%. The local factors that greatly affect drainage on the percentage of damage is 62.00%. PCI average value is 13.47 which indicates a very bad condition (very poor) and requires maintenance or improvement of reconstruction.Abstrak: Kondisi jalan Blangkejeren – Lawe Aunan secara keseluruhan berada di lereng pegunungan sangat dipengaruhi oleh faktor lingkungan setempat seperti drainase, topografi, kondisi tanah, kondisi material dan kondisi beban kendaraan yang melintasi jalan tersebut. Hal ini perlu diperhatikan agar tidak terjadi penurunan kualitas jalan akibat kerusakan permukaan jalan sehingga dapat mempengaruhi keamanan, kenyamanan, dan kelancaran dalam berlalu lintas. Oleh karena itu, perlu dilakukan penelitian evaluasi terhadap kondisi permukaan jalan yang mengalami kerusakan serta faktor setempat yang mempengaruhi kerusakan tersebut agar tidak terjadi penurunan kualitas jalan. Penelitian ini mengambil lokasi di ruas jalan Blangkejeren – Lawe Aunan yang dimulai dari Sta. 529+700 - Sta. 535+206. Umumnya kondisi ruas jalan pada segmen ini banyak ditemukan kerusakan-kerusakan yang dapat mengganggu kenyamanan, kelancaran, dan keamanan pengguna jalan. Dalam penelitian ini data primer diperoleh dengan melakukan survei aktual lapangan yaitu berupa data panjang, lebar, luasan, dan kedalaman tiap jenis kerusakan serta faktor setempat yang mengakibatkan kerusakan tersebut. Survei aktual lapangan dilakukan sepanjang 5,506 km, dengan jarak interval setiap segmen adalah 100 m. Adapun data sekunder diperoleh dari lembaga terkait dan bahan lainnya yang berhubungan dengan penelitian ini. Penelitian ini dianalisis dengan metode PCI (Pavement Condition Index) untuk mendapatkan tingkat kerusakan agar diketahui cara penanganannya, sedangkan untuk identifikasi faktor kerusakannya dilakukan dengan pengamatan secara diskriptif sesuai hasil pengamatan di lapangan berupa jumlah titik kerusakan. Hasil penelitian ini didapatkan bahwa jenis kerusakan yang terjadi pada ruas jalan adalah kerusakan lapisan penutup, lubang, dan keriting. Jenis kerusakan yang umum terjadi pada ruas jalan Blangkejeren – Lawe Aunan adalah kerusakan tepi dengan persentase 87,30 %. Faktor setempat yang sangat mempengaruhi kerusakan adalah drainase dengan persentase 62,00%. Nilai PCI rata-rata yaitu 13,47 yang menunjukkan kondisi sangat buruk (very poor) dan memerlukan pemeliharaan peningkatan atau rekonstruksi.


2019 ◽  
Vol 2 (1) ◽  
pp. 75
Author(s):  
Philipus Resato Nahak ◽  
Yosef Cahyo ◽  
Sigit Winarto

The increase in traffic volume will cause a decrease in service due to decreased road capacity due to an increase in side constraints and due to the increase in traffic volume itself, which will ultimately cause the level of road saturation to increase. The situation occurred in the Umasukaer road section of the Malacca Regency. Therefore it is necessary to address improvements in the quality of the road in order to meet the feasibility of transportation facilities by taking into account the existing technical requirements. The results of planning found that through the 2015 LHR survey data with a prediction of an increase in traffic density of 6% per year, the LHR was obtained with a planned age of 7 years = 2540.7 vehicles/day/department and a 20-year plan life LHR = 5419.1 ked/day / major. The results of a gradual construction planning pavement study can be concluded that the planning model that has been designed is effective in strengthening road construction in accordance with existing technical requirements and efficient in terms of financing. The final results of gradual construction pavement thickness results are: Ashburton thickness (MS 744) = 8 cm, Ashburton (MS 744) = 13 cm, broken stone (CBR 100) = 20 cm, Sirtu (CBR 50) = 10 cm and CBR subgrade 5%. Pertambahan volume lalu lintas akan menyebabkan penurunan layanan diakibatkan menurunnya kapasitas jalan karena adanya peningkatan hambatan samping maupun karena beratambahnya volume lalu lintas itu sendiri yang pada akhirnya akan meyebabkan tingkat kejenuhan jalan meningkat. Keadaan tersebut terjadi ruas jalan Umasukaer Kabupaten Malaka, oleh karena itu perlu adanya penanganan perbaikan kualitas jalan agar memenuhi segi kelayakan sarana transportasi dengan memperhatikan syarat-syarat teknik yang ada. Hasil perencanaan didapatkan bahwa melalui data survey LHR tahun 2015 dengan prediksi peningkatan kepadatan lalu lintas sebesar 6% pertahun maka didapatkan LHR dengan umur rencana 7 tahun = 2540,7 kend/hr/jurusan dan LHR umur rencana 20 tahun = 5419,1 ked/hr/jurusan. Hasil studi perencanaan perkerasan konstruksi bertahap dapat diambil kesimpulan bahwa model perencaaan yang telah dirancang efektif dalam memperkerasa konstruksi jalan sesuai dengan syarat teknis yang ada serta efisien dalam hal pembiayaan. Hasil akhir tebal perkerasan konstruksi bertahap diperoleh hasil: Ketebalan Asbuton (MS 744) = 8 cm, Asbuton (MS 744) = 13 cm, batu pecah (CBR 100) = 20 cm, Sirtu (CBR 50) = 10 cm dan CBR tanah dasar 5%.


LOGISTIK ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 12-18
Author(s):  
Hafidzsyah Alfiana ◽  
Adhi Purnomo

Commercial buildings in the Bassura Mall area (Jalan Jenderal Basuki Rahmat) have resulted in congestion in the area. Vehicles use road bodies to park their vehicles, sidewalks that are used as trading places by street vendors, and the position of the entrance / exit of Bassura Mall for four-wheeled vehicles that is not strategic. These things have caused the author to choose a location in the Bassura Mall area (Jalan Jenderal Basuki Rahmat), East Jakarta which is a local route, where East Jakarta as one of the big cities in the Special Capital Region of Jakarta also experiences high vehicle growth, p. This can be seen on roads in East Jakarta which often experience congestion during rush hour. The purpose of this research is to determine the traffic performance in the area. The method used in this research is direct observation method at the research location and field data collection in the form of parking volume data, pedestrian volume, vehicle volume entering / exiting Mall Bassura, traffic volume, and road performance. Observations were made on weekdays and holidays. The results of the analysis of the performance of the road sections show that the traffic volume on the roads around Mall Bassura is 32,433 SMP / hour on weekdays and 22,577 SMP / hour on holidays, with the service level index being in the F category on weekdays and holidays. Thus, the congestion factors mentioned above have resulted in a decrease in road capacity which has an impact on road performance.


2019 ◽  
Vol 17 ◽  
Author(s):  
Zakiah Ponrahono ◽  
Noorain Mohd Isa ◽  
Ahmad Zaharin Aris ◽  
Rosta Harun

The inbound and outbound traffic flow characteristic of a campus is an important physical component of overall university setting. The traffic circulation generated may create indirect effects on the environment such as, disturbance to lecturetime when traffic congestion occurs during peak-hours, loss of natural environment and greenery, degradation of the visual environment by improper or illegal parking, air pollution from motorized vehicles either moving or in idle mode due to traffic congestion, noise pollution, energy consumption, land use arrangement and health effects on the community of Universiti Putra Malaysia (UPM) Serdang. A traffic volume and Level of Service (LOS) study is required to facilitate better accessibility and improves the road capacity within the campus area. The purpose of this paper is to highlight the traffic volume and Level of Service of the main access the UPM Serdang campus. A traffic survey was conducted over three (3) weekdays during an active semester to understand the traffic flow pattern. The findings on traffic flow during peak hours are highlighted. The conclusions of on-campus traffic flow patterns are also drawn.


Sign in / Sign up

Export Citation Format

Share Document