scholarly journals Advantages of yeast-based recombinant protein technology as vaccine products against infectious diseases

2021 ◽  
Vol 913 (1) ◽  
pp. 012099
Author(s):  
C S W Lestari ◽  
G Novientri

Abstract The yeast expression system is widely used to produce functional recombinant proteins in the biopharmaceutical industry, such as vaccine products. The expression system choices using yeast as the host has many advantages. Various vaccines have been produced commercially using yeast expression systems. This review aims to explore the advantages of the yeast expression system in Saccharomyces cerevisiae, Pichia pastoris, and Hansenula polymorpha, which emphasize vaccine products to prevent human infectious diseases. Selection of the appropriate expression system is carried out by identification at the genetic and fermentation levels, taking into account host features, vectors and expression strategies. We also demonstrate the development of a yeast expression system that can produce recombinant proteins, virus-like particles and yeast surface displays as a novel vaccine strategy against infectious diseases. The recombinant protein produced as a vaccine in the yeast system is cost-effective, immunogenic, and safe. In addition, this system has not introduced new microbe variants in nature that will be safe for the environment. Thus, it has the potential to become a commercial product used in vaccination programs to prevent human infectious diseases.

2019 ◽  
Author(s):  
Rahmatullah Jan ◽  
Sajjad Asaf ◽  
Sanjita Paudel ◽  
Sangkyu Lee ◽  
Kyung-Min Kim

AbstractKaempferol and quercetin are the essential plant secondary metabolites that confer huge biological functions in the plant defense system. These metabolites are produced in low quantities in plants, therefore engineering microbial factory is a favorable strategy for the production of these metabolites. In this study, biosynthetic pathways for kaempferol and quercetin were constructed in Saccharomyces cerevisiae using naringenin as a substrate. The results elucidated a novel step for the first time in kaempferol and quercetin biosynthesis directly from naringenin catalyzed by flavonol 3-hydroxylase (F3H). F3H gene from rice was cloned into pRS42K yeast episomal plasmid (YEP) vector using BamH1 and Xho1 restriction enzymes. We analyzed our target gene activity in engineered and in empty strains. The results were confirmed through TLC followed by Western blotting, nuclear magnetic resonance (NMR), and LC-MS. TLC showed positive results on comparing both compounds extracted from the engineered strain with the standard reference. Western blotting confirmed lack of Oryza sativa flavonol 3-hydroxylase (OsF3H) activity in empty strains while high OsF3H expression in engineered strains. NMR spectroscopy confirmed only quercetin, while LCMS-MS results revealed that F3H is responsible for naringenin conversion to both kaempferol and quercetin. These results concluded that rice F3H catalyzes naringenin metabolism via hydroxylation and synthesizes kaempferol and quercetin.HighlightsCurrent study is a discovery of a novel step in flavonoid biosynthesis pathway of rice plant.In this study F3H gene from rice plant was functionally expressed in yeast expression system.Results confirmed that, F3H gene is responsible for the canalization of naringenin and converted into kaempferol and quercetin.The results were confirmed through, western blotting, TLC, HPLC and NMR analysis.


2020 ◽  
Vol 21 (3) ◽  
pp. 990 ◽  
Author(s):  
Kangsan Kim ◽  
Donghui Choe ◽  
Dae-Hee Lee ◽  
Byung-Kwan Cho

A large proportion of the recombinant proteins manufactured today rely on microbe-based expression systems owing to their relatively simple and cost-effective production schemes. However, several issues in microbial protein expression, including formation of insoluble aggregates, low protein yield, and cell death are still highly recursive and tricky to optimize. These obstacles are usually rooted in the metabolic capacity of the expression host, limitation of cellular translational machineries, or genetic instability. To this end, several microbial strains having precisely designed genomes have been suggested as a way around the recurrent problems in recombinant protein expression. Already, a growing number of prokaryotic chassis strains have been genome-streamlined to attain superior cellular fitness, recombinant protein yield, and stability of the exogenous expression pathways. In this review, we outline challenges associated with heterologous protein expression, some examples of microbial chassis engineered for the production of recombinant proteins, and emerging tools to optimize the expression of heterologous proteins. In particular, we discuss the synthetic biology approaches to design and build and test genome-reduced microbial chassis that carry desirable characteristics for heterologous protein expression.


PLoS ONE ◽  
2009 ◽  
Vol 4 (12) ◽  
pp. e8499 ◽  
Author(s):  
Agata Leszczynska ◽  
Beata Burzynska ◽  
Danuta Plochocka ◽  
Joanna Kaminska ◽  
Magdalena Zimnicka ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yongzhe Zhang ◽  
Fei Liu ◽  
Yan Zhao ◽  
Fan Yang ◽  
Jie Bai ◽  
...  

Abstract Background Plasmodium vivax transmission-blocking vaccines (TBVs) are receiving increasing attention. Based on excellent transmission-blocking activities of the PbPH (PBANKA_0417200) and PbSOP26 (PBANKA_1457700) antigens in Plasmodium berghei, their orthologs in P. vivax, PVX_098655 (PvPH) and PVX_101120 (PvSOP26), were selected for the evaluation of their potential as TBVs. Methods Fragments of PvPH (amino acids 22–304) and PvSOP26 (amino acids 30–272) were expressed in the yeast expression system. The recombinant proteins were used to immunize mice to obtain antisera. The transmission-reducing activities of these antisera were evaluated using the direct membrane feeding assay (DMFA) using Anopheles dirus mosquitoes and P. vivax clinical isolates. Results The recombinant proteins PvPH and PvSOP26 induced robust antibody responses in mice. The DMFA showed that the anti-PvSOP26 sera significantly reduced oocyst densities by 92.0 and 84.1% in two parasite isolates, respectively, whereas the anti-PvPH sera did not show evident transmission-reducing activity. The variation in the DMFA results was unlikely due to the genetic polymorphisms of the two genes since their respective sequences were identical in the clinical P. vivax isolates. Conclusion PvSOP26 could be a promising TBV candidate for P. vivax, which warrants further evaluation. Graphical Abstract


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Fei Du ◽  
Yun-Qi Liu ◽  
Ying-Shuang Xu ◽  
Zi-Jia Li ◽  
Yu-Zhou Wang ◽  
...  

AbstractEscherichia coli is the most widely used bacterium in prokaryotic expression system for the production of recombinant proteins. In BL21 (DE3), the gene encoding the T7 RNA polymerase (T7 RNAP) is under control of the strong lacUV5 promoter (PlacUV5), which is leakier and more active than wild-type lac promoter (PlacWT) under certain growth conditions. These characteristics are not advantageous for the production of those recombinant proteins with toxic or growth-burdened. On the one hand, leakage expression of T7 RNAP leads to rapid production of target proteins under non-inducing period, which sucks resources away from cellular growth. Moreover, in non-inducing or inducing period, high expression of T7 RNAP production leads to the high-production of hard-to-express proteins, which may all lead to loss of the expression plasmid or the occurrence of mutations in the expressed gene. Therefore, more BL21 (DE3)-derived variant strains with rigorous expression and different expression level of T7 RNAP should be developed. Hence, we replaced PlacUV5 with other inducible promoters respectively, including arabinose promoter (ParaBAD), rhamnose promoter (PrhaBAD), tetracycline promoter (Ptet), in order to optimize the production of recombinant protein by regulating the transcription level and the leakage level of T7 RNAP. Compared with BL21 (DE3), the constructed engineered strains had higher sensitivity to inducers, among which rhamnose and tetracycline promoters had the lowest leakage ability. In the production of glucose dehydrogenase (GDH), a protein that causes host autolysis, the engineered strain BL21 (DE3::ara) exhibited higher biomass, cell survival rate and foreign protein expression level than that of BL21 (DE3). In addition, these engineered strains had been successfully applied to improve the production of membrane proteins, including E. coli cytosine transporter protein (CodB), the E. coli membrane protein insertase/foldase (YidC), and the E. coli F-ATPase subunit b (Ecb). The engineered strains constructed in this paper provided more host choices for the production of recombinant proteins.


Sign in / Sign up

Export Citation Format

Share Document