scholarly journals Effect compressive strength and split tensile strength of concrete using aggregate from Tana Toraja district with fly ash substitution

2021 ◽  
Vol 921 (1) ◽  
pp. 012066
Author(s):  
I L K Wong

Abstract Development in Indonesia is increasing day by day. This has resulted in the construction sector from year to year experiencing a lot of progress both in terms of planning/design and in terms of updating the construction methods used. Tana Toraja regency is precise in Saluputti districts. the Maulu river is a source of a lot of coarse and fine aggregates that can be used as a material for mixing concrete. Because this area is the meeting point between the largest rivers. especially in Tana Toraja. Therefore. in this study. coarse and fine aggregates from Tana Toraja. Saluputti district are used as research objects with fly ash as an additional ingredient. The research objective was to determine the effect of fly ash substitution on compressive strength and split tensile in concrete with Tana Toraja aggregate and to determine the characteristics of the concrete produced using the aggregate from Tana Toraja with fly ash substitution. The research method is a sample testing method. in which 72 samples were tested consisting of 36 samples of compressive strength and 36 samples of split tensile strength. The test was carried out at the Concrete Structure and Material Laboratory. Department of Civil Engineering. Universitas Kristen Indonesia Paulus – Makassar South Sulawesi. The results showed that the use of fly ash as a partial substitute for cement would reduce the strength of concrete compared to concrete without the use of fly ash. The greater the level of fly ash given. the strength of the concrete will be reduced by using the aggregate from Tana Toraja district.

Waterway sand and pit sand are the most normally utilized fine aggregates for concrete creation in many parts of the world. Huge scale extraction of these materials presents genuine ecological risk in numerous parts of the nation. Aside from the ecological danger, there still exists the issue of intense lack in many regions. In this way, substitute material in place of river sand for concrete production should be considered. The paper means to examine the compressive and split tensile qualities of concrete produced using quarry residue, sand, and a blend of sand and quarry dust. The experimentation is absolutely research facility based. A total of 60 concrete cubes of size 150 mm x 150 mm x 150 mm, and 60 cylinders 150 mm in diameter and 300 mm deep, conforming to M50 grade were casted. All the samples were cured and tested with a steady water/concrete proportion of 0.31. Out of the 60 blocks cast, 20 each were made out of natural river sand, quarry dust and an equivalent blend of sand and quarry dust. It was discovered that the compressive strength and split tensile strength of concrete produced using the blend of quarry residue and sand was higher than the compressive qualities of concrete produced using 100% sand and 100% quarry dust.


The present study appraises the recitals of carboxylic acid- based admixture to increase concrete water tightness and self-sealing capacity of the cement and geopolymer concrete. Outcomes of the previous studies in particular, adding 1% by cement mass of the carboxylic polymer reasons for reduction in the water dispersion under pressure of 7-day wet cured concrete by 50% associated to that of the conforming reference concrete. At 7 days, M4 mix compressive strength is about 43.5% less than M3 mix. The compressive strength of M4 increases and is about 37.6% less than M3 mix at 28 days of curing. At 7 days, M4 mix split tensile strength is about 17.5% less than M3 mix (cement concrete with 0.45 w/c ratio). The split tensile strength of M4 declines and is about 42.3% less than M3 mix at 28 days of curing. The strength of the geopolymer concrete tends to increase as the time period increases due to the presence of fly ash in it. So it is expected that geopolymer concrete will give more strength than cement concrete in long term with the presence of carboxylic acid


2018 ◽  
Vol 195 ◽  
pp. 01008
Author(s):  
Puput Risdanareni ◽  
Januarti Jaya Ekaputri ◽  
Ike Maulidiyawati ◽  
Poppy Puspitasari

This paper investigates the effect of sintered fly ash lightweight aggregate as coarse aggregate substitution on the mechanical properties of concrete. The lightweight aggregate (LWA) was produced using the cold bonded method and then sintered at a temperature of 900°C. An alkaliactivated system was applied as a binding agent of the LWA. Fly ash was used as precursor while sodium hydroxide and sodium silicate were employed as alkali activators. Three variations of the LWA dosage were performed, which were 0%, 50%, and 100 % of the volume of coarse aggregate in the concrete mixture. The mechanical properties of the concrete investigated in this research are the compressive strength and split tensile strength. The result showed that the mechanical properties of the concrete slightly decrease along with the increased dosage of the LWA in the mixture. However, employing sintered fly ash the LWA is proven as an effective solution in reducing the concrete density without sacrificing its strength.


2021 ◽  
Vol 5 (10) ◽  
pp. 271
Author(s):  
Priyanka Gupta ◽  
Nakul Gupta ◽  
Kuldeep K. Saxena ◽  
Sudhir Goyal

Geopolymer is an eco-friendly material used in civil engineering works. For geopolymer concrete (GPC) preparation, waste fly ash (FA) and calcined clay (CC) together were used with percentage variation from 5, 10, and 15. In the mix design for geopolymers, there is no systematic methodology developed. In this study, the random forest regression method was used to forecast compressive strength and split tensile strength. The input content involved were caustic soda with 12 M, 14 M, and 16 M; sodium silicate; coarse aggregate passing 20 mm and 10 mm sieve; crushed stone dust; superplasticizer; curing temperature; curing time; added water; and retention time. The standard age of 28 days was used, and a total of 35 samples with a target-specified compressive strength of 30 MPa were prepared. In all, 20% of total data were trained, and 80% of data testing was performed. Efficacy in terms of mean absolute error (MAE), root mean square error (RMSE), coefficient of determination (R2), and MSE (mean squared error) is suggested in the model. The results demonstrated that the RFR model is likely to predict GPC compressive strength (MAE = 1.85 MPa, MSE = 0.05 MPa, RMSE = 2.61 MPa, and R2 = 0.93) and split tensile strength (MAE = 0.20 MPa, MSE = 6.83 MPa, RMSE = 0.24 MPa, and R2 = 0.90) during training.


2020 ◽  
Vol 10 (2) ◽  
pp. 5402-5405 ◽  
Author(s):  
N. Bheel ◽  
M. A. Jokhio ◽  
J. A. Abbasi ◽  
H. B. Lashari ◽  
M. I. Qureshi ◽  
...  

Cement production involves high amounts of energy consumption and carbon dioxide emissions. Pakistan is facing a serious energy crisis and cement’s cost is increasing. In addition, landfilling of potential concrete components can lead to environmental degradation. The use of waste as cement replacement not only reduces cement production cost by reducing energy consumption, but it is also environmentally friendly. The purpose of this study is to analyze the characteristics of concrete by partially replacing cement with Rice Husk Ash (RHA) and Fly Ash (FA). This study is mainly focused on the performance of concrete conducting a slump test, and investigating indirect tensile and compressive strength. Cement was replaced with RHA and FA by 5% (2.5% RHA + 2.5% FA), 10% (5% RHA + 5% FA), 15% (7.5% RHA + 7.5% FA) and 20% (10% RHA+10% FA) by weight. Ninety concrete samples were cast with mix proportions of 1:2:4 and 0.55 water/cement ratio. Cube and cylindrical samples were used for measuring compressive and split tensile strength respectively, after 7 and 28 days. The results showed that after 28 days, the 5% RHA+5% FA sample’s compressive strength was enhanced by 16.14% and its indirect tensile strength was improved by 15.20% compared to the conventional sample. Moreover, the sample’s slump value dropped as the content of RHA and FA increased.


INFO-TEKNIK ◽  
2020 ◽  
Vol 21 (2) ◽  
pp. 227
Author(s):  
Fauzi Rahman ◽  
Gawit Hidayat ◽  
Novita Bertiani

According to the Badan Pusat Statistik data in 2018, the total area of oil palm plantations in Indonesia currently reaches around 12.3 million hectares. Solid waste is the most waste, which is around 35-40% of the total Fresh Fruit Bunches (FFB) which is processed in the form of empty fruit bunches, fiber, fruit shells, and burnt ash. PT. Hasnur Citra Terpadu in Rantau, Tapin Regency, South Kalimantan is one of the Palm Oil Mill which in the combustion process of a boiler engine using oil palm shells and fibers is burned simultaneously. The result of the combustion process produces waste in the form of boiler crust ash which is fine textured (fly ash) and coarse textured (bottom ash). This study uses fly ash as a cement substitution for concrete mixtures. The making of mortar specimens was varied with fly ash with a percentage of 0%, 10%, 15%, 20% and 25% which will be tested for compressive strength at the age of 3 days, 7 days, 14 days, 21 days, and 28 days. Then the making of concrete specimens is planned with a quality of 25 MPa and the concrete compressive strength is tested at the age of 3 days, 7 days, 14 days, 28 days and 56 days and the split tensile strength test of the concrete at 28 days. Based on the results of the mortar compressive strength analysis, the optimum mixture of fly ash is 10% which is used for making concrete. The average compressive strength of normal concrete at 28 days is 26.33 MPa and the compressive strength of concrete with 10% fly ash (optimum concrete) is 26.14 MPa exceeding the design compressive strength of 25 MPa. Based on the results of the split tensile strength test of concrete at the age of 28 days, it was obtained 3,914 MPa for normal concrete and 3,466 MPa for optimum concrete.


2021 ◽  
Vol 8 (1) ◽  
pp. H1-H7
Author(s):  
M. Gundu ◽  
S. Abhaysinha

In recent years, concrete in the construction industry has rapidly increased worldwide, including developing countries like India. The raw materials required to produce such a quantity require huge depletion of natural resources. On the other hand, disposal of paper waste, fly ash, and plastic waste is one of the biggest problems faced by many countries, including India, the amount of waste collected and recycled is less compared to disposal quantity. The use of these wastes in concrete reduces the disposal of waste in nature. In this experiment work, the use of these wastes in the concrete has been studied. Preliminary tests like specific gravity, fineness modulus, and water absorption have been carried out on the materials. Various mix designs are prepared by partial replacement of cement with fly ash and paper pulp, and sand is completely replaced with the quarry dust, and coarse aggregate is replaced with shredded plastic waste to create sustainable concrete. A comparative study on the properties like slump cone, the weight of the cubes, compressive strength and split tensile strength, and feasibility of such concrete has been carried out. Results indicated that the weight of cubes started to decrease with the addition of waste. Compressive strength and split tensile strength show that the strength started to fall with the addition of plastic. The cost of concrete decreased with the addition of waste. 5 % of plastic waste in concrete and 3 % of paper pulp, and 5 % of fly ash is considered the optimal replacement percentage.


Abstract. Light-weight structures are widely used in the construction field. Light-weight fillers such as aggregates can be used to improve weightless structures. Generally, standard aggregates cannot be used to attain the desired weight for light-weight structures. To determine a light-weight filler, the aggregates are made by using fly-ash along with cement mortar. Fly ash was collected from the Mettur Thermal power plant. Cement and fly-ash were mixed in a concrete mixer in a proportion of 30:70 with a water-cement ratio of 0.3 and it is mixed until the pellets are formed. The aggregates are replaced at different percentages such as 0%, 10%, 20%, and 30% respectively to the coarse aggregate. The properties such as compressive strength, split tensile strength and flexural strength were taken. The maximum strength was attained at 30% of fly-ash aggregate with a compressive strength of 46.47 N/mm2, split tensile strength of 14.85 N/mm2 and flexural strength of 3.80 N/mm2.


2021 ◽  
Author(s):  
M. Indhumathi Anbarasan ◽  
S.R. Sanjaiyan ◽  
S. Nagan Soundarapandiyan

Geopolymer concrete (GPC) has significant potential as a more sustainable alternative for ordinary Portland cement concrete. GPC had been introduced to reduce carbon footprints and thereby safeguarding environment. This emerging eco friendly construction product finds majority of its application in precast and prefabricated structures due to the special curing conditions required. Sustained research efforts are being taken to make the product suitable for in situ applications. The developed technology will certainly address the issues of huge energy consumption as well reduce water use which is becoming scarce nowadays. Ground Granulated Blast Furnace Slag (GGBS) a by-product of iron industries in combination with fly ash has proved to give enhanced strength, durability as well reduced setting time. This study investigates the effect of GGBS as partial replacement of fly ash in the manufacture of GPC. Cube and cylindrical specimens were cast and subjected to ambient curing as well to alternate wetting-drying cycles. The 28 day compressive strength, split tensile strength, flexural strength and density of GPC specimens were found. The study revealed increase in compressive strength, split tensile strength, density as well flexural strength up to 40 percent replacement of fly ash by GGBS.


2019 ◽  
Vol 93 ◽  
pp. 02008
Author(s):  
Tribikram Mohanty ◽  
Sauna Majhi ◽  
Purnachandra Saha ◽  
Bitanjaya Das

Due to rapid industrialization extensive quantity of waste materials like fly ash, silica fume, rice ash husk, and ferrochrome ash etc. are generated. Ferrochrome ash is generated from Ferro-alloy industry and fly-ash is produced in thermal power plants are alternative materials which have the potential of being utilized in concrete as a mineral admixture. The present investigation considers the combined influence on strength of concrete using various percentage fly ash and ferrochrome ash as partial replacement of cement. Experiments are carried out to get mechanical properties of ordinary Portland cement by replacement of fly ash by 10%, 20%, 30 % and 3% by ferrochrome ash. Mechanical properties are measured by determining compressive strength, split tensile strength and flexural strength. It can be inferred from the study that a small amount of ferrochrome ash mixed with 30 % fly-ash gives higher compressive strength as compared to fly ash alone. Addition of ferrochrome ash also increases the split tensile strength of concrete. Since ferrochrome ash and fly-ash are both industrial waste, utilization of these waste materials reduced the burden of dumping and greenhouse gas and thereby produce sustainable concrete.


Sign in / Sign up

Export Citation Format

Share Document