scholarly journals Temporal Distribution and Characteristic Analysis of Oil Spill in Balikpapan Bay

2021 ◽  
Vol 925 (1) ◽  
pp. 012063
Author(s):  
D A Widiawan

Abstract Balikpapan Bay has an oil spill case that attracts many people because it is considered a serious environmental problem and is detrimental to the environment. One of the cases that occurred was the leak of an oil pipeline in Balikpapan Bay due to the wrong anchorage of a ship that occurred on March 31, 2018. Detection of oil spills for three months using Sentinel 1-A satellite data to determine the distribution and analysis of the same oil characteristics from the source of pipe leaks in the Gulf of Balikpapan. The multi-temporal distribution of oil spills in Balikpapan Bay in March, April, and May 2018 has a significant difference in the upstream and mouth of the bay due to a pipe leak on March 31, 2018. Characteristics of upstream oil spills represented by stations 4 and 5 have the anisotropy value is lower than at the mouth of the bay which is represented by stations 1 and 2. The characteristics of the oil spill in Balikpapan Bay have differences before and after the oil spill due to pipe leakage as indicated by the decrease in the anisotropy value.

2021 ◽  
Vol 9 (7) ◽  
pp. 732
Author(s):  
Haiwen Han ◽  
Shengmao Huang ◽  
Shuang Liu ◽  
Jingjing Sha ◽  
Xianqing Lv

Oil spills have immediate adverse effects on marine ecological functions. Accurate assessment of the damage caused by the oil spill is of great significance for the protection of marine ecosystems. In this study the observation data of Chaetoceros and shellfish before and after the Penglai 19-3 oil spill in the Bohai Sea were analyzed by the least-squares fitting method and radial basis function (RBF) interpolation. Besides, an oil transport model is provided which considers both the hydrodynamic mechanism and monitoring data to accurately simulate the spatial and temporal distribution of total petroleum hydrocarbons (TPH) in the Bohai Sea. It was found that the abundance of Chaetoceros and shellfish exposed to the oil spill decreased rapidly. The biomass loss of Chaetoceros and shellfish are 7.25×1014~7.28×1014 ind and 2.30×1012~2.51×1012 ind in the area with TPH over 50 mg/m3 during the observation period, respectively. This study highlights the evaluation of ecological resource loss caused by the oil spill, which is useful for the protection and restoration of the biological resources following the oil spill.


2021 ◽  
Author(s):  
Svitlana Liubartseva ◽  
Ivan Federico ◽  
Giovanni Coppini ◽  
Rita Lecci

<p>Being situated in a semi-enclosed Mediterranean lagoon, the Port of Taranto represents a transport, industrial and commercial hub, where the port infrastructure, a notorious steel plant, oil refinery and naval shipyards coexist with highly-dense urban zone, recreation facilities, mussel farms, and vulnerable environmental sites. A Single Buoy Mooring in the center of the Mar Grande used by tankers and subsea pipeline that takes oil directly from tanker to refinery are assumed to stay at risk of accidental oil spills, despite significant progress in technology and prevention.</p><p>The oil spill model MEDSLIK-II (http://medslik-ii.org) coupled to the high resolution Southern Adriatic Northern Ionian coastal Forecasting System (SANIFS http://sanifs.cmcc.it Federico et al., 2017) is used to model hypothetical oil spill scenarios in stochastic mode. 15,000+ hypothetical individual spills are generated from randomly selected start locations: 50% from a buoy and 50% along the subsea pipeline 2018–2020. Individual spill scenario is based on a real crude oil spill caused by a catastrophic pipeline failure happened in Genoa in April 2016 (Vairo et al., 2017). The model outputs are processed statistically to represent quantitively: (1) timing of the oil drift; (2) hazard maps in probability terms at the sea surface and on the coastline; (3) oil mass balance; (4) local-zone contamination assessment.</p><p>The simulations reveal that around 48% of the spilled oil will evaporate during the first 8 hours after the accident. Being transported by highly variable currents and waves, the rest is additionally exposed to multiply reflections from sea walls and concrete wharfs that dominate in the study area. As a result, the oil will be dispersed almost isotropically in the Mar Grande, indicating a rather moderate or small level of concentrations over the minimum threshold values (French McCay, 2016).</p><p>We have concluded that at a probability of 50%, the first oil beaching event will happen within 14 hours after the accident. The most contaminated areas are predicted on and around the nearest Port berths, on the coastlines of the urban area and on the tips of the breakwaters that frame the Mar Grande openings. The remote areas of the West Port and Mar Piccolo are expected to be the least contaminated ones.</p><p>Results are applicable to contingency planning, ecological risk assessment, cost-benefit analysis, and education.</p><p>This work is conducted in the framework of the IMPRESSIVE project (#821922) co-funded by the European Commission under the H2020 Programme.</p><p>References</p><p>Federico, I., Pinardi, N., Coppini, G., Oddo, P., Lecci, R., Mossa, M., 2017. Coastal ocean forecasting with an unstructured grid model in the southern Adriatic and northern Ionian seas. Nat. Hazards Earth Syst. Sci., 17, 45–59, doi: 10.5194/nhess-17-45-2017.</p><p>French McCay, D., 2016. Potential effects thresholds for oil spill risk assessments. Proc. of the 39 AMOP Tech. Sem., Environment and Climate Change Canada, Ottawa, ON, 285–303.</p><p>Vairo, T., Magrì, S., Qualgliati, M., Reverberi, A.P., Fabiano, B., 2017. An oil pipeline catastrophic failure: accident scenario modelling and emergency response development. Chem. Eng. Trans., 57, 373–378, doi: 10.3303/CET1757063.</p>


1993 ◽  
Vol 1993 (1) ◽  
pp. 695-697 ◽  
Author(s):  
Thomas A. Dean ◽  
Lyman McDonald ◽  
Michael S. Stekoll ◽  
Richard R. Rosenthal

ABSTRACT This paper examines alternative designs for the monitoring and assessment of damages of environmental impacts such as oil spills. The optimal design requires sampling at pairs of impacted (oiled) and control (unoiled) sites both before and after the event. However, this design proved impractical in evaluating impacts of the Exxon Valdez oil spill on nearshore subtidal communities, and may be impractical for future monitoring. An alternative design is discussed in which sampling is conducted at pairs of control and impact sites only after the impact.


2013 ◽  
Vol 61 (2) ◽  
pp. 93-104 ◽  
Author(s):  
Eliete Zanardi-Lamardo ◽  
Marcia Caruso Bícego ◽  
Rolf Roland Weber

An oil pipeline ruptured in May 1994 and 2 700 tons of crude oil leaked into the São Sebastião Channel, affecting several neighboring areas. A program for the monitoring of hydrocarbons in sediments, using the gas chromatography / flame ionization detector methodology, was being undertaken in the area at the time. The data obtained were compared to those of samples collected after the accident to determine the fate of the oil spilled and ascertain its contribution to the environment. The earlier results showed that hydrocarbons were introduced from two different sources: biogenic, mainly from terrestrial plants, and anthropogenic, as oil, in sewage and from shipping. The later data indicated that the site closest to the pipeline rupture had been the most affected. Following that, two stations located at the north entrance of the channel presented the highest n-alkane concentrations, suggesting that the northeasterly wind-driven currents had carried the oil northward. Seven months later, one of these stations, a high-energy site, showed some signs of recovery, but this process was not observed at the other, which seemed to be a low-energy site. In conclusion, the data showed that the aliphatic hydrocarbon analyses were powerful tools for the assessment of the fate of the oil spill and that the northern part of the São Sebastião Channel is more subject to the effects of oil spills.


Author(s):  
R.R. Daminev ◽  
◽  
L.R. Asfandiarova ◽  
R.N. Asfandiarov ◽  
◽  
...  

The peculiarities of oil production and field preparation were considered, the causes of emergency oil spills were identified, the main indicators of the risk of oil spill on the external oil pipeline were calculated and the damage from the accident was estimated, sorbents used in the spill localization were analyzed, the method of eliminating emergency oil spills at the fields "Salym Petroleum Development N.V." was proposed.


2019 ◽  
Vol 116 (12) ◽  
pp. 5467-5471 ◽  
Author(s):  
Anna Bruederle ◽  
Roland Hodler

Oil spills can lead to irreversible environmental degradation and are a potential hazard to human health. We study how onshore oil spills affect neonatal and infant mortality by combining spatial data from the Nigerian Oil Spill Monitor with Demographic and Health Surveys. To identify a causal effect, we compare siblings born to the same mother, conceived before and after a nearby oil spill. We find that nearby oil spills that occur before conception increase neonatal mortality by 38.3 deaths per 1,000 live births, which corresponds to an increase of around 100% on the sample mean. The effect is fairly uniform across girls and boys, socio-economic backgrounds, and locations. We show that this effect is not driven by events related to oil production or violent conflict. Rather, our results are consistent with medical and epidemiological evidence showing that exposure to hydrocarbons can pose risks to fetal development. We provide further evidence suggesting that the effects of oil spills on neonatal mortality persist for several years after the occurrence of an oil spill.


Author(s):  
E. R. Bayramov ◽  
M. F. Buchroithner ◽  
R. V. Bayramov

The main goal of this research was to detect oil spills, to determine the oil spill frequencies and to approximate oil leak sources around the Oil Rocks Settlement, the Chilov and Pirallahi Islands in the Caspian Sea using 136 multi-temporal ENVISAT Advanced Synthetic Aperture Radar Wide Swath Medium Resolution Images acquired during 2006-2010. The following oil spill frequencies were observed around the Oil Rocks Settlement, the Chilov and Pirallahi Islands: 2-10 (3471.04 sq. km.), 11-20 (971.66 sq. km.), 21-50 (692.44 sq. km.), 51-128 (191.38 sq. km.). The most critical oil leak sources with the frequency range of 41-128 were observed at the Oil Rocks Settlement. The exponential regression analysis between wind speeds and oil slick areas detected from 136 multi-temporal ENVISAT images revealed the regression coefficient equal to 63%. The regression model showed that larger oil spill areas were observed with decreasing wind speeds. The spatiotemporal patterns of currents in the Caspian Sea explained the multi-directional spatial distribution of oil spills around Oil Rocks Settlement, the Chilov and Pirallahi Islands. The linear regression analysis between detected oil spill frequencies and predicted oil contamination probability by the stochastic model showed the positive trend with the regression coefficient of 30%.


Author(s):  
Ogoro Mark ◽  
Onyeanusi Obianuju Divine ◽  
Eze Allen Uche

The study assessed facilities-based activities of illegal oil bunkering and its spatial trend, hotspots across Delta state. Secondary data was obtained from Landsat imageries of 2013 and 2018, National Oil Spill Monitor and National Oil Spill Detection and Response Agency (NOSDRA). The images were classified using supervised classification method, and the coordinates of illegal bunkering sites were overlaid and analyzed using the Differentiate Weighing Technique to express the magnitude of illegal bunkering activities that occurred across space while the coordinate were imported and overlaid on the administrative map of the study area to enable the appreciation and understanding of the trend in facilities-based activities of illegal bunkers across space. Findings revealed that between the years of 2013 through 2018, 162 oil spills was recorded and were spills recorded as a result of illegal bunkering in Delta state. Oil pipeline accounted for over 50 percent of targeted facilities by the operation of the illegal bunkering. Also, there is a noticeable decrease in the area covered by mangrove and fresh water forest in the tune of 68 and 60 percent respectively. This decrease can be attributed to the impact of spill oil on vegetal cover and health. Thus, the study recommends that communities sensitization programs should be encourage educating the host communities on the extent of self-inflicted impacts on the environment by the activities of locals.


1981 ◽  
Vol 1981 (1) ◽  
pp. 677-683 ◽  
Author(s):  
Mary Ann Froehlich ◽  
John F. Bellantoni

ABSTRACT The incidence of oil spills of more than 10,000 gallons in the years 1974 through 1977 was compared for four regions in the United States that carry heavy oil traffic: Greater New York-New Jersey, Delaware Bay, the Louisiana coast, and the northern Texas coast. The purpose was to determine whether there was any significant difference in oil spill rates among the four regions. The spill data from the study were drawn from the Pollution Incident Reporting System (PIRS), the records of the National Response Center (NRC), and the Commercial Vessel Casualty File. Oil movement data were obtained from the U.S. Army Corps of Engineers, Waterborne Commerce of the United States. A comparison of PIRS and NRC data indicated that neither data source was complete. From the amount of agreement between the two sources and some statistical assumptions, it was estimated that the PIRS data covered about 75 percent of all spills and about 88 percent of all vessel-related spills. The spill rates calculated for the four regions showed no significant differences. However, a significantly higher spill rate was noted for the Hudson River subdivision of the New York-New Jersey region. An examination of the spill reports showed that most of the spills were associated with poor weather conditions, that is, ice or fog.


2021 ◽  
Vol 1201 (1) ◽  
pp. 012017
Author(s):  
A S Lokhov ◽  
M G Gubaidullin ◽  
V B Korobov

Abstract A volumetric model of accidental oil spills on the land surface was developed, based on numerical methods for solving hydrodynamic equations, and taking into account the processes of oil spreading over the surface, its filtration into the soil and evaporation into the atmosphere. Based on the results of calculations using the hydrodynamic model for the most probable scenarios of oil spills, it is possible to obtain an estimate of the spatial-temporal scale of the spill, which, together with data on the terrain and the presence of water bodies, is the input data for the expert model. Based on the joint use of the hydrodynamic model of the oil spill and expert technologies, the territory of the Nenets Autonomous Okrug and the South Khylchuyu-Varandey oil pipeline were zoned in more detail. It makes it possible to predict the scale and areas most susceptible to negative impact in the event of an accidental oil spill, and to make the necessary decisions for the location of the spill response facilities, as well as the facilities themselves, already at the stage of selection and design of the pipeline route.


Sign in / Sign up

Export Citation Format

Share Document