scholarly journals Illegal Oil Bunkering Hotspots, Its Implication on Vegetal Depletion in Delta State, Nigeria

Author(s):  
Ogoro Mark ◽  
Onyeanusi Obianuju Divine ◽  
Eze Allen Uche

The study assessed facilities-based activities of illegal oil bunkering and its spatial trend, hotspots across Delta state. Secondary data was obtained from Landsat imageries of 2013 and 2018, National Oil Spill Monitor and National Oil Spill Detection and Response Agency (NOSDRA). The images were classified using supervised classification method, and the coordinates of illegal bunkering sites were overlaid and analyzed using the Differentiate Weighing Technique to express the magnitude of illegal bunkering activities that occurred across space while the coordinate were imported and overlaid on the administrative map of the study area to enable the appreciation and understanding of the trend in facilities-based activities of illegal bunkers across space. Findings revealed that between the years of 2013 through 2018, 162 oil spills was recorded and were spills recorded as a result of illegal bunkering in Delta state. Oil pipeline accounted for over 50 percent of targeted facilities by the operation of the illegal bunkering. Also, there is a noticeable decrease in the area covered by mangrove and fresh water forest in the tune of 68 and 60 percent respectively. This decrease can be attributed to the impact of spill oil on vegetal cover and health. Thus, the study recommends that communities sensitization programs should be encourage educating the host communities on the extent of self-inflicted impacts on the environment by the activities of locals.

2021 ◽  
Vol 21 (1) ◽  
pp. 18
Author(s):  
Muhammad Yaris Ahyadi ◽  
Abimanyu Putra Syarifudin ◽  
Alesha Zahira Khairunnisa ◽  
Joana Dacosta Ximenes ◽  
Muhammad Hilal Hamdi

One form of marine pollution is an oil spill that can come from the fault of tanker activity while operating.An example of the case is the incident of oil spill in Balikpapan Bay due to the leak of pertamina's oil pipeline in 2018, 5 thousand liters of oil spilled and polluted the sea with an area of more than 12 thousand hectares.Using normative juridical methods, researchers will conduct an analysis of the impact of the oil spill in Balikpapan Bay on the lives of the surrounding community based on legal and environmental perspectives.The purpose of the author by making this paper is to know how the process of tackling and impacting oil spills so far for the surrounding community based on the law and the environment, can also be an input for the government to be able to resolve the case of oil spill in balikpapan bay that has lasted about 3 years, so that the lives of local people can run smoothly as before the oil spill incident.


Polar Biology ◽  
2021 ◽  
Vol 44 (3) ◽  
pp. 575-586
Author(s):  
Pepijn De Vries ◽  
Jacqueline Tamis ◽  
Jasmine Nahrgang ◽  
Marianne Frantzen ◽  
Robbert Jak ◽  
...  

AbstractIn order to assess the potential impact from oil spills and decide the optimal response actions, prediction of population level effects of key resources is crucial. These assessments are usually based on acute toxicity data combined with precautionary assumptions because chronic data are often lacking. To better understand the consequences of applying precautionary approaches, two approaches for assessing population level effects on the Arctic keystone species polar cod (Boreogadus saida) were compared: a precautionary approach, where all exposed individuals die when exposed above a defined threshold concentration, and a refined (full-dose-response) approach. A matrix model was used to assess the population recovery duration of scenarios with various but constant exposure concentrations, durations and temperatures. The difference between the two approaches was largest for exposures with relatively low concentrations and short durations. Here, the recovery duration for the refined approach was less than eight times that found for the precautionary approach. Quantifying these differences helps to understand the consequences of precautionary assumptions applied to environmental risk assessment used in oil spill response decision making and it can feed into the discussion about the need for more chronic toxicity testing. An elasticity analysis of our model identified embryo and larval survival as crucial processes in the life cycle of polar cod and the impact assessment of oil spills on its population.


Author(s):  
M. Sornam

Oil spill pollution plays a significant role in damaging marine ecosystem. Discharge of oil due to tanker accidents has the most dangerous effects on marine environment. The main waste source is the ship based operational discharges. Synthetic Aperture Radar (SAR) can be effectively used for the detection and classification of oil spills. Oil spills appear as dark spots in SAR images. One major advantage of SAR is that it can generate imagery under all weather conditions. However, similar dark spots may arise from a range of unrelated meteorological and oceanographic phenomena, resulting in misidentification. A major focus of research in this area is the development of algorithms to distinguish ‘oil spills’ from ‘look-alikes’. The features of detected dark spot are then extracted and classified to discriminate oil spills from look-alikes. This paper describes the development of a new approach to SAR oil spill detection using Segmentation method and Artificial Neural Networks (ANN). A SAR-based oil-spill detection process consists of three stages: image segmentation, feature extraction and object recognition (classification) of the segmented objects as oil spills or look-alikes. The image segmentation was performed with Otsu method. Classification has been done using Back Propagation Network and this network classifies objects into oil spills or look-alikes according to their feature parameters. Improved results have been achieved for the discrimination of oil spills and look-alikes.


2020 ◽  
Vol 4 (2) ◽  
pp. 127
Author(s):  
Paulin Yosephin Marini ◽  
Sherlly Monica Bonsapia ◽  
Johni R.V. Korwa

<p><em>This study aims to analyze a blowout from an oil and gas leak owned by PTT Exploration and Production (PTTEP) Australasia in the Montara oil field in the Indonesian Timor Sea, and how to resolve disputes between Australia and Indonesia. A qualitative approach was used in this study, whilst the data collection technique was through library research. The theory of state responsibility, the concept of human security, and the concept of international maritime law are used to analyze disputes between Indonesia and Australia. The study found that the Montara oil spill had not only damaged the marine ecosystem but also polluted Indonesian waters. It also found that although the Australian government had formed a special commission to resolve cases and even used dispersant, it had not satisfied all parties. Several points are summarized. First, the Montara oil spill in Australia is a transnational study because the impact has crossed national borders. Secondly, UNCLOS has a weakness in the settlement of the Montara case because the Convention only provides a description related to ‘Responsibility of Each Country’ and does not specifically arrange material compensation mechanisms to countries that cause sea pollution. Third, the Montara oil spill has caused huge losses for Indonesian seaweed farmers, especially 13 districts in NTT. The recommendations are that the Indonesian government along with the Montara Victim Peoples’ Advocacy Team should continue to follow up the case of oil spills from the Montara platform and continue to fight for compensation to the Australian government and the PTTEP as the responsible party.</em></p>


2021 ◽  
Author(s):  
Svitlana Liubartseva ◽  
Ivan Federico ◽  
Giovanni Coppini ◽  
Rita Lecci

&lt;p&gt;Being situated in a semi-enclosed Mediterranean lagoon, the Port of Taranto represents a transport, industrial and commercial hub, where the port infrastructure, a notorious steel plant, oil refinery and naval shipyards coexist with highly-dense urban zone, recreation facilities, mussel farms, and vulnerable environmental sites. A Single Buoy Mooring in the center of the Mar Grande used by tankers and subsea pipeline that takes oil directly from tanker to refinery are assumed to stay at risk of accidental oil spills, despite significant progress in technology and prevention.&lt;/p&gt;&lt;p&gt;The oil spill model MEDSLIK-II (http://medslik-ii.org) coupled to the high resolution Southern Adriatic Northern Ionian coastal Forecasting System (SANIFS http://sanifs.cmcc.it Federico et al., 2017) is used to model hypothetical oil spill scenarios in stochastic mode. 15,000+ hypothetical individual spills are generated from randomly selected start locations: 50% from a buoy and 50% along the subsea pipeline 2018&amp;#8211;2020. Individual spill scenario is based on a real crude oil spill caused by a catastrophic pipeline failure happened in Genoa in April 2016 (Vairo et al., 2017). The model outputs are processed statistically to represent quantitively: (1) timing of the oil drift; (2) hazard maps in probability terms at the sea surface and on the coastline; (3) oil mass balance; (4) local-zone contamination assessment.&lt;/p&gt;&lt;p&gt;The simulations reveal that around 48% of the spilled oil will evaporate during the first 8 hours after the accident. Being transported by highly variable currents and waves, the rest is additionally exposed to multiply reflections from sea walls and concrete wharfs that dominate in the study area. As a result, the oil will be dispersed almost isotropically in the Mar Grande, indicating a rather moderate or small level of concentrations over the minimum threshold values (French McCay, 2016).&lt;/p&gt;&lt;p&gt;We have concluded that at a probability of 50%, the first oil beaching event will happen within 14 hours after the accident. The most contaminated areas are predicted on and around the nearest Port berths, on the coastlines of the urban area and on the tips of the breakwaters that frame the Mar Grande openings. The remote areas of the West Port and Mar Piccolo are expected to be the least contaminated ones.&lt;/p&gt;&lt;p&gt;Results are applicable to contingency planning, ecological risk assessment, cost-benefit analysis, and education.&lt;/p&gt;&lt;p&gt;This work is conducted in the framework of the IMPRESSIVE project (#821922) co-funded by the European Commission under the H2020 Programme.&lt;/p&gt;&lt;p&gt;References&lt;/p&gt;&lt;p&gt;Federico, I., Pinardi, N., Coppini, G., Oddo, P., Lecci, R., Mossa, M., 2017. Coastal ocean forecasting with an unstructured grid model in the southern Adriatic and northern Ionian seas. Nat. Hazards Earth Syst. Sci., 17, 45&amp;#8211;59, doi: 10.5194/nhess-17-45-2017.&lt;/p&gt;&lt;p&gt;French McCay, D., 2016. Potential effects thresholds for oil spill risk assessments. Proc. of the 39 AMOP Tech. Sem., Environment and Climate Change Canada, Ottawa, ON, 285&amp;#8211;303.&lt;/p&gt;&lt;p&gt;Vairo, T., Magr&amp;#236;, S., Qualgliati, M., Reverberi, A.P., Fabiano, B., 2017. An oil pipeline catastrophic failure: accident scenario modelling and emergency response development. Chem. Eng. Trans., 57, 373&amp;#8211;378, doi: 10.3303/CET1757063.&lt;/p&gt;


Author(s):  
Igal Berenshtein ◽  
Shay O’Farrell ◽  
Natalie Perlin ◽  
James N Sanchirico ◽  
Steven A Murawski ◽  
...  

Abstract Major oil spills immensely impact the environment and society. Coastal fishery-dependent communities are especially at risk as their fishing grounds are susceptible to closure because of seafood contamination threat. During the Deepwater Horizon (DWH) disaster for example, vast areas of the Gulf of Mexico (GoM) were closed for fishing, resulting in coastal states losing up to a half of their fishery revenues. To predict the effect of future oil spills on fishery-dependent communities in the GoM, we develop a novel framework that combines a state-of-the-art three-dimensional oil-transport model with high-resolution spatial and temporal data for two fishing fleets—bottom longline and bandit-reel—along with data on the social vulnerability of coastal communities. We demonstrate our approach by simulating spills in the eastern and western GoM, calibrated to characteristics of the DWH spill. We find that the impacts of the eastern and western spills are strongest in the Florida and Texas Gulf coast counties respectively both for the bandit-reel and the bottom longline fleets. We conclude that this multimodal spatially explicit quantitative framework is a valuable management tool for predicting the consequences of oil spills at locations throughout the Gulf, facilitating preparedness and efficient resource allocation for future oil-spill events.


1993 ◽  
Vol 1993 (1) ◽  
pp. 695-697 ◽  
Author(s):  
Thomas A. Dean ◽  
Lyman McDonald ◽  
Michael S. Stekoll ◽  
Richard R. Rosenthal

ABSTRACT This paper examines alternative designs for the monitoring and assessment of damages of environmental impacts such as oil spills. The optimal design requires sampling at pairs of impacted (oiled) and control (unoiled) sites both before and after the event. However, this design proved impractical in evaluating impacts of the Exxon Valdez oil spill on nearshore subtidal communities, and may be impractical for future monitoring. An alternative design is discussed in which sampling is conducted at pairs of control and impact sites only after the impact.


1991 ◽  
Vol 1991 (1) ◽  
pp. 677-680 ◽  
Author(s):  
D.D. Evans ◽  
G.W. Mulholland ◽  
J.R. Lawson ◽  
E.J. Tennyson ◽  
M.F. Fingas ◽  
...  

ABSTRACT The Center for Fire Research (CFR) at the National Institute of Standards and Technology (NIST) is conducting research related to safety in offshore drilling and oil spill pollution under joint funding from Minerals Management Service (MMS), U.S. Coast Guard, and the American Petroleum Institute. Technical assistance in measurement has been donated by Environment Canada. This research has focused on examining the phenomena associated with crude oil combustion and the impact of using burning as a spill response method. The process of burning crude oil on water as a means to mitigate oil spills has been investigated with a research effort combining both small-scale experiments and calculations. As a result of these studies, there has been increased understanding of the burning process, including burning rate, heat radiation, smoke emission, smoke composition, and smoke dispersion in the atmosphere. A key to gaining acceptance of burning as a spill response technique is the demonstration that favorable results obtained at laboratory scale can be shown to continue in test burns representing the size of fires expected in actual operations. Field-scale burn tests are being planned and coordinated jointly by MMS, API, USCG, and Environment Canada to document the use of burning technology under conditions simulating actual oil spill cleanup operations. The purpose of this project is to measure the effects of oil spill burning in laboratory and field tests.


2014 ◽  
Vol 2014 (1) ◽  
pp. 2228-2241
Author(s):  
Torstein Pedersen ◽  
Javier Perez ◽  
Jos Van Heseen

ABSTRACT A typical oil spill recovery vessel has been historically outfitted with an oil spill detection (OSD) radar. During an oil spill recovery operation, there is a dedicated operator who is responsible for interpreting information from the radar image. Industry developments over the last several years now require that an OSD radar automatically detect and track an oil spill. There are two primary needs driving this development. The first is that OSD systems and operations are becoming more sophisticated; automatic OSD aids for a more efficient oil spill operation where an operator's attention may be directed to a potential spill. The automatic OSD also aids a multi-sensor system; one such example is where an OSD radar is used to steer an IR camera to a candidate spill for more detailed evaluation or validation. The other primary driver for automatic OSD is for monitoring systems, which serve for early warning. Monitoring systems may be found along coastal installations or oil platforms. The automatic spill detection functionality of an OSD system may be implemented in different levels of sophistication. Perhaps the simplest configuration is one that uses fixed thresholds relative to the image for alarming whether a region in a radar image is a spill or not. The benefit of simple threshold detector is that it is easy to implement in software. The weakness is that it is prone to both lower overall detection rate and high false alarm rate. A more robust automatic spill detection method is one that treats it as an image-processing problem. The paper here presents a model based OSD. Generation of confidence maps is central to the method and provides an indication of the likelihood of oil. Inputs to the confidence maps come from multiple sources, several of which are based on uniquely constructed models. Among these is a histogram comparator, which scans a radar image and compares the data to reference models from real oil spills. A discussion of the methods used focuses on (a) the necessary steps prior to the confidence map construction, (b) how the confidence maps are layered with inputs, (c) how the information in the confidence maps is transitioned into the detection of oil, (d) and finally alarming.


2013 ◽  
Vol 61 (2) ◽  
pp. 93-104 ◽  
Author(s):  
Eliete Zanardi-Lamardo ◽  
Marcia Caruso Bícego ◽  
Rolf Roland Weber

An oil pipeline ruptured in May 1994 and 2 700 tons of crude oil leaked into the São Sebastião Channel, affecting several neighboring areas. A program for the monitoring of hydrocarbons in sediments, using the gas chromatography / flame ionization detector methodology, was being undertaken in the area at the time. The data obtained were compared to those of samples collected after the accident to determine the fate of the oil spilled and ascertain its contribution to the environment. The earlier results showed that hydrocarbons were introduced from two different sources: biogenic, mainly from terrestrial plants, and anthropogenic, as oil, in sewage and from shipping. The later data indicated that the site closest to the pipeline rupture had been the most affected. Following that, two stations located at the north entrance of the channel presented the highest n-alkane concentrations, suggesting that the northeasterly wind-driven currents had carried the oil northward. Seven months later, one of these stations, a high-energy site, showed some signs of recovery, but this process was not observed at the other, which seemed to be a low-energy site. In conclusion, the data showed that the aliphatic hydrocarbon analyses were powerful tools for the assessment of the fate of the oil spill and that the northern part of the São Sebastião Channel is more subject to the effects of oil spills.


Sign in / Sign up

Export Citation Format

Share Document