scholarly journals Synthesis and characterization of mesoporous gamma-alumina by glucose as soft-template for molybdenum-99 adsorption: high and low molar ratio of water to aluminium isopropoxide effect

2021 ◽  
Vol 927 (1) ◽  
pp. 012005
Author(s):  
I Saptiama ◽  
A Nurmanjaya ◽  
F Rindiantono ◽  
Marlina ◽  
A M Lestari ◽  
...  

Abstract The mesoporous gamma-alumina is a good material for metal adsorption. Its textural properties are excellent, mainly for molybdenum-99 radioisotopes adsorption as part of 99Mo/99mTc generator in nuclear medicine. In this work, we have prepared mesoporous gamma-alumina by sol-gel treatment in the presence of glucose as a soft template. The molar ratio of reactant (water: aluminium isopropoxide(AIP)) was applied in the high and low ratios (150:1 and 25:1). The resulted mesoporous gamma-alumina was investigated using characterization analysis of X-ray diffraction, Nitrogen adsorption-desorption, and FTIR. The results indicate that the mesoporous gamma-alumina in the high molar ratio of water to AIP had a higher surface area and better crystallinity than the low molar ratio of reactants. Furthermore, in the Mo adsorption test, the mesoporous gamma-alumina with the high molar ratio posed a higher Mo adsorption capacity up to 55.69 mg Mo g−1 adsorbent. In the future, the molar ratio of reactants should be tuned in the range of around 150:1 to obtain the optimal Mo adsorption capacities of the resulted mesoporous gamma-alumina using the glucose template.

Ceramics ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 667-680
Author(s):  
Marta Dobrosielska ◽  
Michał Zieliński ◽  
Miłosz Frydrych ◽  
Mariusz Pietrowski ◽  
Piotr Marciniak ◽  
...  

Al2O3-TiO2 systems with Ti:Al 0.1, 0.5 and 1.0 molar ratio obtained by the sol–gel method have been used as a platinum support. As a precursor of alumina gel, aluminum isopropoxide has been chosen. Titanium tert-butoxylate was applied to obtain titania gel and hexachloroplatinic acid was applied as a source of platinum. The systems have been characterized by the following methods: thermogravimetric analysis (TGA), Fourier transformation infrared spectroscopy (FTIR), X-ray powder diffraction (XRPD), low-temperature nitrogen adsorption–desorption isotherms (BET, BJH), temperature-programmed reduction with hydrogen (TPR-H2) and hydrogen chemisorption. Reactions of toluene to methylcyclohexane and selective o-chloronitrobenzene (o-CNB) to o-chloroaniline (o-CAN) hydrogenation were used as the tests of systems’ catalytic activity. The application of Al2O3-TiO2 as a support has enabled the obtaining of platinum catalysts showing high activities for hydrogenation of toluene and selective hydrogenation of o-chloronitrobenzene to o-chloroaniline in the liquid phase. The highest activity in both reactions has been found for Pt/Al2O3-0.5TiO2 catalyst and the highest selectivity for Pt/Al2O3-. The activity of Pt/Al2O3-TiO2 catalysts was higher than that of alumina-supported ones.


2013 ◽  
Vol 284-287 ◽  
pp. 230-234
Author(s):  
Yu Jen Chou ◽  
Chi Jen Shih ◽  
Shao Ju Shih

Recent years mesoporous bioactive glasses (MBGs) have become important biomaterials because of their high surface area and the superior bioactivity. Various studies have reported that when MBGs implanted in a human body, hydroxyl apatite layers, constituting the main inorganic components of human bones, will form on the MBG surfaces to increase the bioactivity. Therefore, MBGs have been widely applied in the fields of tissue regeneration and drug delivery. The sol-gel process has replaced the conventional glasses process for MBG synthesis because of the advantages of low contamination, chemical flexibility and lower calcination temperature. In the sol-gel process, several types of surfactants were mixed with MBG precursor solutions to generate micelle structures. Afterwards, these micelles decompose to form porous structures after calcination. Although calcination is significant for contamination, crystalline and surface area in MBG, to the best of the authors’ knowledge, only few systematic studies related to calcination were reported. This study correlated the calcination parameters and the microstructure of MBGs. Microstructure evaluation was characterized by transmission electron microscopy and nitrogen adsorption/desorption. The experimental results show that the surface area and the pore size of MBGs decreased with the increasing of the calcination temperature, and decreased dramatically at 800°C due to the formation of crystalline phases.


Author(s):  
T. F. Kouznetsova ◽  
A. I. Ivanets ◽  
J. D. Sauka

Titania-silica membranes on a porous quartz substrate are prepared by its direct contact with metal silicate sol at various Ti/Si ratios in the conditions of coagel sedimentation and presence of cetylpyridinium chloride. The study of textural and adsorption properties of membranes is conducted by low-temperature nitrogen adsorption-desorption, including methods of t-plots and DFT theory. It was shown that obtained membranes have mesoporous structure with the specific surface area and pore hydraulic diameter varied in intervals of 64–217 m2 /g and 4–11 nm, respectively. Developed values of surface area remain up to molar ratio of Ti/Si = 50/50.


1991 ◽  
Vol 69 (10) ◽  
pp. 1511-1515 ◽  
Author(s):  
Awad I. Ahmed ◽  
S. E. Samra ◽  
S. A. El-Hakam

CuO–Al2O3 catalysts containing various amounts of copper oxide have been prepared by precipitation. The phase changes were studied by X-ray diffraction. The results obtained revealed that the thermal treatment of solid CuO–Al2O3 at 700 °C produced only crystalline CuO. Heating to 900 °C led to the formation of copper alumina spinel together with unreacted CuO and γ-Al2O3. The spinel content was found to increase with increasing copper content. Nitrogen adsorption–desorption isotherms on the calcined samples have been measured. Surface areas have been calculated and the pore structure analysed. The textural properties of the system were found to depend on both the copper content and the calcination temperature. Key words: CuO, Al2O3 catalysts, structure, surface area, pore structure.


Catalysts ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 541
Author(s):  
Mikhail F. Butman ◽  
Nataliya E. Kochkina ◽  
Nikolay L. Ovchinnikov ◽  
Nikolay V. Zinenko ◽  
Dmitry N. Sergeev ◽  
...  

A biomimetic solution technology for producing a photocatalytic material in the form of biomorphic titanium oxide fibers with a hierarchical structure using short flax fiber as a biotemplate is proposed. The impregnation of flax fibers intensified under hydrothermal conditions with a precursor was performed in an autoclave to activate the nucleation of the photoactive TiO2 phases. The interaction between precursor and flax fibers was studied by using infrared spectroscopy (IR) and differential scanning calorimetry/thermogravimetry analysis (DSC/TG). The morphology, structure, and textural properties of the TiO2 fibers obtained at annealing temperatures of 500–700 °C were determined by X-ray diffraction analysis, scanning electron microscopy, and nitrogen adsorption/desorption. It is shown that the annealing temperature of the impregnated biotemplates significantly affects the phase composition, crystallite size, and porous structure of TiO2 fiber samples. The photocatalytic activity of the obtained fibrous TiO2 materials was evaluated by using the decomposition of the cationic dye Rhodamine B in an aqueous solution (concentration 12 mg/L) under the influence of ultraviolet radiation (UV). The maximum photodegradation efficiency of the Rhodamine B was observed for TiO2 fibers annealed at 600 °C and containing 40% anatase and 60% rutile. This sample ensured 100% degradation of the dye in 20 min, and this amount significantly exceeds the photocatalytic activity of the commercial Degussa P25 photocatalyst and TiO2 samples obtained previously under hydrothermal conditions by the sol-gel method.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1771 ◽  
Author(s):  
Stefan Neatu ◽  
Mihaela M. Trandafir ◽  
Adelina Stănoiu ◽  
Ovidiu G. Florea ◽  
Cristian E. Simion ◽  
...  

This study presents the synthesis and characterization of lanthanum-modified alumina supported cerium–manganese mixed oxides, which were prepared by three different methods (coprecipitation, impregnation and citrate-based sol-gel method) followed by calcination at 500 °C. The physicochemical properties of the synthesized materials were investigated by various characterization techniques, namely: nitrogen adsorption-desorption isotherms, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and H2–temperature programmed reduction (TPR). This experimental study demonstrated that the role of the catalytic surface is much more important than the bulk one. Indeed, the incipient impregnation of CeO2–MnOx catalyst, supported on an optimized amount of 4 wt.% La2O3–Al2O3, provided the best results of the catalytic combustion of methane on our catalytic micro-convertors. This is mainly due to: (i) the highest pore size dimensions according to the Brunauer-Emmett-Teller (BET) investigations, (ii) the highest amount of Mn4+ or/and Ce4+ on the surface as revealed by XPS, (iii) the presence of a mixed phase (Ce2MnO6) as shown by X-ray diffraction; and (iv) a higher reducibility of Mn4+ or/and Ce4+ species as displayed by H2–TPR and therefore more reactive oxygen species.


2017 ◽  
Vol 35 (7-8) ◽  
pp. 714-720 ◽  
Author(s):  
M Zienkiewicz-Strzałka ◽  
M Błachnio ◽  
A Deryło-Marczewska ◽  
RB Kozakevych ◽  
YM Bolbukh ◽  
...  

Silver-based nanomaterials and composites are important components in materials science and engineering due to the reactivity of silver nanophase based on exceptional surface effects. Ag-doped SiO2 nanocomposites were synthesized by wet impregnation procedure of aminopropyl-functionalized silica materials with submicrometer structure. Aminopropyl-functionalized pyrogenic silicon dioxide with amount of amino groups established as half and close to full monolayer was used to immobilize the nanosilver phase obtained from ammoniacal silver complex as a noble metal precursor. Pyrogenic silicon dioxide as an inexpensive nanostructured material with useful properties including adsorptive affinity for noble metal ions and organic macromolecules was applied as a support for diamminesilver(I) ions and finally for silver nanoparticles. In the present study, the effect of amino-functionalization and silver nanoparticles deposition was monitored by investigation of the textural properties and thermal stability of obtained nanocomposites. The properties of the nanocomposites were investigated by transmission electron microscopy, nitrogen adsorption–desorption isotherms, and thermal analysis (thermogravimetry/differential scanning calorimetry).


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Aidong Tang ◽  
Yuehua Deng ◽  
Jiao Jin ◽  
Huaming Yang

A novel nanocomposite ZnFe2O4-TiO2/MCM-41 (ZTM) was synthesized by a sol-gel method and characterized through X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), N2adsorption-desorption, Raman spectroscopy, and ultraviolet visible (UV-vis) spectrophotometry. The results confirmed the incorporation of ZnFe2O4-TiO2nanoparticles inside the pores of the mesoporous MCM-41 host without destroying its integrity. ZnFe2O4nanoparticles can inhibit the transformation of anatase into rutile phase of TiO2. Incorporation of ZnFe2O4-TiO2within MCM-41 avoided the agglomeration of nanoparticles and reduced the band gap energy of TiO2to enhance its visible light photocatalytic activity. UV-vis absorption edges of ZTM nanocomposites redshifted with the increase of Zn/Ti molar ratio. The nanocomposite approach could be a potential choice for enhancing the photoactivity of TiO2, indicating an interesting application in the photodegradation and photoelectric fields.


2010 ◽  
Vol 113-116 ◽  
pp. 775-779 ◽  
Author(s):  
Yan Liu ◽  
Yun Wang ◽  
Xiao Jie Zhang ◽  
Ji Min Xie ◽  
Yong Sheng Yan

Mesoporous silica SBA-15 has been prepared rapidly under normal pressure by microwave irradiation method. The textural properties were studied by low-angle X-ray diffraction (XRD) and nitrogen adsorption-desorption. The optimum adsorption conditions of Pb(Ⅱ) on SBA-15 was investigated. The results show that the adsorption kinetics follows a pseudo-second-order rate model and the experimental equilibrium data is fitted well by Langmuir adsorption isotherm. The adsorption capacity reaches 50.10 mg•g-1 which is much higher than that of hydrothermal synthesized samples. This adsorbent has been applied in the determination of Pb(Ⅱ) in river sediments samples.


2007 ◽  
Vol 1007 ◽  
Author(s):  
Aracely Hernandez ◽  
Patricia Esquivel-Ferriño ◽  
Idalia Gomez ◽  
Lucia Cantu

ABSTRACTIn the present work, sol-gel method was used to incorporate in a ceramic material a non steroidal anti-inflammatory drug (piroxicam) as model drug. The incorporation of the drug in the SiO2 network was carried out at different sol-gel synthesis parameters, such as pH (3 and 5) and the alkoxide/water ratio (1:6 and 1:8). The biomaterial obtained was analyzed by thermal analysis TGA-DTA, infrared spectroscopy (FTIR), Scanning Electronic Microscopy (SEM) and X-ray diffraction (XRD); specific surface area and porosity were analyzed from nitrogen adsorption isotherm. Better drug incorporation into the material was achieved at the synthesis conditions of pH 5 and 1:6 alkoxide/water molar ratio.


Sign in / Sign up

Export Citation Format

Share Document