scholarly journals Integrated geological interpretation of remote sensing data (Boysun structural-tectonic zone)

2021 ◽  
Vol 929 (1) ◽  
pp. 012002
Author(s):  
L R Bikeeva ◽  
Z Kh Safarov ◽  
M G Yuldasheva ◽  
N M Akramova ◽  
Sh A Umarov

Abstract In recent years, remote sensing data are increasingly used in the practice of oil and gas prospecting. This article discusses the main methodological aspects of identifying oil and gas promising structures by using materials for interpreting remote sensing data and a complex of geological and geophysical data. Remotely sensed data exhibit a regional review of the various geological formations and tectonic fracture zone and faults that are otherwise not possible detection by human eyes on the ground. The method of structural interpretation space image allows you to: detail the internal structure of oil and gas regions; to reveal the position and features of the tectonic blocks, structures of the second and third (anticlines, synclines, monoclines, etc.) orders; identify major disruptive violations; identify chains of local structures; fix the transverse structural elements that determine tectonic fragmentation. By deciphering the remote sensing data, the distribution and nature of the lineament network marking disjunctive dislocations and zones of increased fracturing are revealed and analyzed, as well as ring structures are detected, which in most cases indicate local structures of the sedimentary cover at different depth sections. The lithology and lineament interpreted from these multi-level data were integrated with data collected from the ground.

2009 ◽  
Vol 1 (1) ◽  
Author(s):  
Biswajeet Pradhan

AbstractThis paper summarizes the findings of groundwater potential zonation mapping at the Bharangi River basin, Thane district, Maharastra, India, using Satty’s Analytical Hierarchal Process model with the aid of GIS tools and remote sensing data. To meet the objectives, remotely sensed data were used in extracting lineaments, faults and drainage pattern which influence the groundwater sources to the aquifer. The digitally processed satellite images were subsequently combined in a GIS with ancillary data such as topographical (slope, drainage), geological (litho types and lineaments), hydrogeomorphology and constructed into a spatial database using GIS and image processing tools. In this study, six thematic layers were used for groundwater potential analysis. Each thematic layer’s weight was determined, and groundwater potential indices were calculated using groundwater conditions. The present study has demonstrated the capabilities of remote sensing and GIS techniques in the demarcation of different groundwater potential zones for hard rock basaltic basin.


Author(s):  
Ram L. Ray ◽  
Maurizio Lazzari ◽  
Tolulope Olutimehin

Landslide is one of the costliest and fatal geological hazards, threatening and influencing the socioeconomic conditions in many countries globally. Remote sensing approaches are widely used in landslide studies. Landslide threats can also be investigated through slope stability model, susceptibility mapping, hazard assessment, risk analysis, and other methods. Although it is possible to conduct landslide studies using in-situ observation, it is time-consuming, expensive, and sometimes challenging to collect data at inaccessible terrains. Remote sensing data can be used in landslide monitoring, mapping, hazard prediction and assessment, and other investigations. The primary goal of this chapter is to review the existing remote sensing approaches and techniques used to study landslides and explore the possibilities of potential remote sensing tools that can effectively be used in landslide studies in the future. This chapter also provides critical and comprehensive reviews of landslide studies focus¬ing on the role played by remote sensing data and approaches in landslide hazard assessment. Further, the reviews discuss the application of remotely sensed products for landslide detection, mapping, prediction, and evaluation around the world. This systematic review may contribute to better understanding the extensive use of remotely sensed data and spatial analysis techniques to conduct landslide studies at a range of scales.


2020 ◽  
Vol 12 (24) ◽  
pp. 4139
Author(s):  
Ruirui Wang ◽  
Wei Shi ◽  
Pinliang Dong

The nighttime light (NTL) on the surface of Earth is an important indicator for the human transformation of the world. NTL remotely sensed data have been widely used in urban development, population estimation, economic activity, resource development and other fields. With the increasing use of artificial lighting technology in agriculture, it has become possible to use NTL remote sensing data for monitoring agricultural activities. In this study, National Polar Partnership (NPP)-Visible Infrared Imaging Radiometer Suite (VIIRS) NTL remote sensing data were used to observe the seasonal variation of artificial lighting in dragon fruit cropland in Binh Thuan Province, Vietnam. Compared with the statistics of planted area, area having products and production of dragon fruit by district in the Statistical Yearbook of Binh Thuan Province 2018, values of the mean and standard deviation of NTL brightness have significant positive correlations with the statistical data. The results suggest that the NTL remotely sensed data could be used to reveal some agricultural productive activities such as dragon fruits production accurately by monitoring the seasonal artificial lighting. This research demonstrates the application potential of NTL remotely sensed data in agriculture.


2013 ◽  
Vol 10 (5) ◽  
pp. 6153-6192
Author(s):  
F.-J. Chang ◽  
W. Sun

Abstract. The study aims to model regional evaporation that possesses the ability to present the spatial distribution of evaporation across the whole Taiwan by the adaptive network-based fuzzy inference system (ANFIS) based solely on remote sensing data. The remote sensing data used in this study consist of Landsat image products including Enhanced Vegetation Index (EVI) and land surface temperature (LST). The model construction is designed through two types of data allocation (temporal and spatial) driven with the same ten-year data of EVI and LST derived from Landsat images. Evidences indicate the estimation model based solely on remotely sensed data can effectively detect the spatial variation of evaporation and appropriately capture the evaporation trend with acceptable errors of about 1 mm day−1. The results also demonstrate the composite of EVI and LST input to the proposed estimation model improves the accuracy of estimated evaporation values as compared with the model using LST as the only input, which reveals EVI indeed benefits the estimation process. The results suggest Model-T (temporal input allocation) is suitable for making island-wide evaporation estimation while Model-S (spatial input allocation) is suitable for making evaporation estimation at ungauged sites. An island-wide evaporation map for the whole study area (Taiwan Island) is then derived. It concludes the proposed ANFIS model incorporated solely with remote sensing data can reasonably well generate evaporation estimation and is reliable as well as easily applicable for operational estimation of evaporation over large areas where the network of ground-based meteorological gauging stations is not dense enough or readily available.


2012 ◽  
Vol 10 (s1) ◽  
pp. s11004-311006 ◽  
Author(s):  
Qianqian Li Qianqian Li ◽  
Xiaomei Chen Xiaomei Chen ◽  
Xing Liu Xing Liu ◽  
Bingjing Mao Bingjing Mao ◽  
Guoqiang Ni Guoqiang Ni

Author(s):  
Volodymyr Filipovych ◽  
Anton Mychak ◽  
Alexandr Kudryashov ◽  
Ruslan Shevchuk

The results of the analysis of geoecological problems of territories of long-term hydrocarbon production are presented. Based on the analysis of ground-based and remote studies, the possibilities of space data were determined during the eco-monitoring of hydrocarbon deposits. A methodological and technological scheme for assessing the risks of harming the environment is proposed. The list of tasks that can be solved using Earth remote sensing data:- control of environmental pollution by hydrocarbons (oil, gas) at different stages of the functioning of the oil and gas complex - from the search and exploitation of deposits, to the transportation, storage and processing of petroleum products;- flooding and flooding of territories of oil production by underground waters;- identification, mapping, field studies, discontinuous violations of various ranks, are ways of migration of oil and gas in the upper layers of the earth's crust;- identification and mapping of technogenic sources of gas contamination of the surface layer of the atmosphere, namely:- non-geometrical wells, oil and gas pipelines;- buried under modern sediments, pit-well houses, mines.Satellite monitoring consists of 4 stages. At the first, preliminary stage, objects of remote monitoring are determined, a base of satellite and thematic data is formed, the foundations of a future thematic GIS are laid. At the second stage, the actual detection (decryption) of objects and territories polluted with hydrocarbons is carried out. At the next, third stage, a set of field work is carried out in order to validate the research methodology and verify the data obtained using ground-based measurements.At the fourth, final stage, based on an analysis of all the information received, an assessment of the risks of dangerous situations is carried out and their possible consequences are predicted.The possibilities of assessing the risks of dangerous situations in areas of long-term hydrocarbon production according to remote sensing data are considered. A review of hazardous situations resulting from hydrocarbon production in the city of Borislav is given .; recommendations are proposed to reduce the risk of their occurrence.


Author(s):  
G Rushingabigwi ◽  
W Kalisa ◽  
P Nsengiyumva ◽  
F Zimulinda ◽  
D Mukanyiligira ◽  
...  

The desert's dust and anthropogenic biomass burning's black carbon (BC) in the tropical regions are associated with many effects on climate and air quality. The dust and BC are the selected aerosols, which affect health by polluting the breathable air. This research discusses the effects of both the aerosols, especially while they interact with the clouds. The respective aerosol extinction optical thickness (AOT) extinction was analysed with the sensible heat from Turbulence. The research purposes to quantitatively study the remote sensing data for fine particulate matter, PM2.5, heterogeneously mixing both the dust and the pulverized black carbon's soot or ash, to analyse at which levels PM2.5 can endanger human health in the sub-Saharan region. The mainly analysed data had been assimilated from different remote sensing tools; the Goddard interactive online visualization and analysis infrastructure (GIOVANNI) was in the centre of data collection; GIS, the research data analysis software. In results, the rise and fall of the averaged sensible heat were associated with the rise and fall of averaged aerosol extinction AOT; the direct effects of the selected aerosols on the clouds are also presented. Regarding the health effects, PM2.5 quantities are throughout beyond the tolerably recommended quantity of 25μg/m3; thus, having referred to erstwhile research, inhabitants would consume food and drug supplements which contain vanillic acid during dusty seasons. Keywords: Geographic Information System (GIS), remotely sensed data, spatio-temporal (data) analysis


Author(s):  
M. R. Mohd Salleh ◽  
N. I. Ishak ◽  
K. A. Razak ◽  
M. Z. Abd Rahman ◽  
M. A. Asmadi ◽  
...  

<p><strong>Abstract.</strong> Remote sensing has been widely used for landslide inventory mapping and monitoring. Landslide activity is one of the important parameters for landslide inventory and it can be strongly related to vegetation anomalies. Previous studies have shown that remotely sensed data can be used to obtain detailed vegetation characteristics at various scales and condition. However, only few studies of utilizing vegetation characteristics anomalies as a bio-indicator for landslide activity in tropical area. This study introduces a method that utilizes vegetation anomalies extracted using remote sensing data as a bio-indicator for landslide activity analysis and mapping. A high-density airborne LiDAR, aerial photo and satellite imagery were captured over the landslide prone area along Mesilau River in Kundasang, Sabah. Remote sensing data used in characterizing vegetation into several classes of height, density, types and structure in a tectonically active region along with vegetation indices. About 13 vegetation anomalies were derived from remotely sensed data. There were about 14 scenarios were modeled by focusing in 2 landslide depth, 3 main landslide types with 3 landslide activities by using statistical approach. All scenarios show that more than 65% of the landslides are captured within 70% of the probability model indicating high model efficiency. The predictive model rate curve also shows that more than 45% of the independent landslides can be predicted within 30% of the probability model. This study provides a better understanding of remote sensing data in extracting and characterizing vegetation anomalies induced by hillslope geomorphology processes in a tectonically active region in Malaysia.</p>


Sign in / Sign up

Export Citation Format

Share Document