scholarly journals Accuracy estimation of two global burned area products at national scale

2021 ◽  
Vol 932 (1) ◽  
pp. 012001
Author(s):  
T Katagis ◽  
I Z Gitas

Abstract In this work we perform an initial assessment of the accuracy of two publicly available MODIS burned area products, MCD64A1 C6 and MODIS FireCCI51, at national scale in a Mediterranean region. The research focused on two fire seasons for the years 2016 and 2017 and comparison was performed against a higher resolution Sentinel-2 dataset. The specific objectives were to assess their capabilities in detection of fire events occurring primarily in forest and semi-natural lands and also to investigate their spatial uncertainties. The analysis combined monthly fire observations and accuracy metrics derived from error matrices. Satisfactory performance was achieved by the two products in detection of larger fires (> 100 ha) whereas their spatial performance exhibited good agreement with the reference data. MCD64A1 C6 exhibited a more consistent performance overall and the 250 m FireCCI51 product exhibited relatively higher sensitivity in detection of smaller (<100 ha) fires. Although additional work is required for a more rigorous assessment of the variability of these burned area products, our research has implications for their usability in fire-related applications at finer scales.

Author(s):  
V.P. Bondarenko ◽  
O.O. Matviichuk

Detail investigation of equilibrium chemical reactions in WO3–H2O system using computer program FacktSage with the aim to establish influence of temperature and quantity of water on formation of compounds of H2WO4 and WO2(OH)2 as well as concomitant them compounds, evaporation products, decomposition and dissociation, that are contained in the program data base were carried out. Calculations in the temperature range from 100 to 3000 °С were carried out. The amount moles of water added to 1 mole of WO3 was varied from 0 to 27. It is found that the obtained data by the melting and evaporation temperatures of single-phase WO3 are in good agreement with the reference data and provide additionally detailed information on the composition of the gas phase. It was shown that under heating of 1 mole single-phase WO3 up to 3000 °С the predominant oxide that exist in gaseous phase is (WO3)2. Reactions of it formation from other oxides ((WO3)3 and (WO3)4) were proposed. It was established that compound H2WO4 is stable and it is decomposed on WO3 and H2O under 121 °C. Tungsten Oxide Hydrate WO2(OH)2 first appears under 400 °С and exists up to 3000 °С. Increasing quantity of Н2О in system leads to decreasing transition temperature of WO3 into both liquid and gaseous phases. It was established that adding to 1 mole WO3 26 mole H2O maximum amount (0,9044–0,9171 mole) WO2(OH)2 under temperatures 1400–1600 °С can be obtained, wherein the melting stage of WO3 is omitted. Obtained data also allowed to state that that from 121 till 400 °С WO3–Н2O the section in the О–W–H ternary system is partially quasi-binary because under these temperatures in the system only WO3 and Н2O are present. Under higher temperatures WO3–Н2O section becomes not quasi-binary since in the reaction products WO3 with Н2O except WO3 and Н2O, there are significant amounts of WO2(OH)2, (WO3)2, (WO3)3, (WO3)4 and a small amount of atoms and other compounds. Bibl. 12, Fig. 6, Tab. 5.


2021 ◽  
Vol 13 (8) ◽  
pp. 1509
Author(s):  
Xikun Hu ◽  
Yifang Ban ◽  
Andrea Nascetti

Accurate burned area information is needed to assess the impacts of wildfires on people, communities, and natural ecosystems. Various burned area detection methods have been developed using satellite remote sensing measurements with wide coverage and frequent revisits. Our study aims to expound on the capability of deep learning (DL) models for automatically mapping burned areas from uni-temporal multispectral imagery. Specifically, several semantic segmentation network architectures, i.e., U-Net, HRNet, Fast-SCNN, and DeepLabv3+, and machine learning (ML) algorithms were applied to Sentinel-2 imagery and Landsat-8 imagery in three wildfire sites in two different local climate zones. The validation results show that the DL algorithms outperform the ML methods in two of the three cases with the compact burned scars, while ML methods seem to be more suitable for mapping dispersed burn in boreal forests. Using Sentinel-2 images, U-Net and HRNet exhibit comparatively identical performance with higher kappa (around 0.9) in one heterogeneous Mediterranean fire site in Greece; Fast-SCNN performs better than others with kappa over 0.79 in one compact boreal forest fire with various burn severity in Sweden. Furthermore, directly transferring the trained models to corresponding Landsat-8 data, HRNet dominates in the three test sites among DL models and can preserve the high accuracy. The results demonstrated that DL models can make full use of contextual information and capture spatial details in multiple scales from fire-sensitive spectral bands to map burned areas. Using only a post-fire image, the DL methods not only provide automatic, accurate, and bias-free large-scale mapping option with cross-sensor applicability, but also have potential to be used for onboard processing in the next Earth observation satellites.


2021 ◽  
Vol 13 (1) ◽  
pp. 432
Author(s):  
Aru Han ◽  
Song Qing ◽  
Yongbin Bao ◽  
Li Na ◽  
Yuhai Bao ◽  
...  

An important component in improving the quality of forests is to study the interference intensity of forest fires, in order to describe the intensity of the forest fire and the vegetation recovery, and to improve the monitoring ability of the dynamic change of the forest. Using a forest fire event in Bilahe, Inner Monglia in 2017 as a case study, this study extracted the burned area based on the BAIS2 index of Sentinel-2 data for 2016–2018. The leaf area index (LAI) and fractional vegetation cover (FVC), which are more suitable for monitoring vegetation dynamic changes of a burned area, were calculated by comparing the biophysical and spectral indices. The results showed that patterns of change of LAI and FVC of various land cover types were similar post-fire. The LAI and FVC of forest and grassland were high during the pre-fire and post-fire years. During the fire year, from the fire month (May) through the next 4 months (September), the order of areas of different fire severity in terms of values of LAI and FVC was: low > moderate > high severity. During the post fire year, LAI and FVC increased rapidly in areas of different fire severity, and the ranking of areas of different fire severity in terms of values LAI and FVC was consistent with the trend observed during the pre-fire year. The results of this study can improve the understanding of the mechanisms involved in post-fire vegetation change. By using quantitative inversion, the health trajectory of the ecosystem can be rapidly determined, and therefore this method can play an irreplaceable role in the realization of sustainable development in the study area. Therefore, it is of great scientific significance to quantitatively retrieve vegetation variables by remote sensing.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 3982
Author(s):  
Giacomo Lazzeri ◽  
William Frodella ◽  
Guglielmo Rossi ◽  
Sandro Moretti

Wildfires have affected global forests and the Mediterranean area with increasing recurrency and intensity in the last years, with climate change resulting in reduced precipitations and higher temperatures. To assess the impact of wildfires on the environment, burned area mapping has become progressively more relevant. Initially carried out via field sketches, the advent of satellite remote sensing opened new possibilities, reducing the cost uncertainty and safety of the previous techniques. In the present study an experimental methodology was adopted to test the potential of advanced remote sensing techniques such as multispectral Sentinel-2, PRISMA hyperspectral satellite, and UAV (unmanned aerial vehicle) remotely-sensed data for the multitemporal mapping of burned areas by soil–vegetation recovery analysis in two test sites in Portugal and Italy. In case study one, innovative multiplatform data classification was performed with the correlation between Sentinel-2 RBR (relativized burn ratio) fire severity classes and the scene hyperspectral signature, performed with a pixel-by-pixel comparison leading to a converging classification. In the adopted methodology, RBR burned area analysis and vegetation recovery was tested for accordance with biophysical vegetation parameters (LAI, fCover, and fAPAR). In case study two, a UAV-sensed NDVI index was adopted for high-resolution mapping data collection. At a large scale, the Sentinel-2 RBR index proved to be efficient for burned area analysis, from both fire severity and vegetation recovery phenomena perspectives. Despite the elapsed time between the event and the acquisition, PRISMA hyperspectral converging classification based on Sentinel-2 was able to detect and discriminate different spectral signatures corresponding to different fire severity classes. At a slope scale, the UAV platform proved to be an effective tool for mapping and characterizing the burned area, giving clear advantage with respect to filed GPS mapping. Results highlighted that UAV platforms, if equipped with a hyperspectral sensor and used in a synergistic approach with PRISMA, would create a useful tool for satellite acquired data scene classification, allowing for the acquisition of a ground truth.


2006 ◽  
Vol 6 (4) ◽  
pp. 957-974 ◽  
Author(s):  
L. Giglio ◽  
G. R. van der Werf ◽  
J. T. Randerson ◽  
G. J. Collatz ◽  
P. Kasibhatla

Abstract. We present a method for estimating monthly burned area globally at 1° spatial resolution using Terra MODIS data and ancillary vegetation cover information. Using regression trees constructed for 14 different global regions, MODIS active fire observations were calibrated to burned area estimates derived from 500-m MODIS imagery based on the assumption that burned area is proportional to counts of fire pixels. Unlike earlier methods, we allow the constant of proportionality to vary as a function of tree and herbaceous vegetation cover, and the mean size of monthly cumulative fire-pixel clusters. In areas undergoing active deforestation, we implemented a subsequent correction based on tree cover information and a simple measure of fire persistence. Regions showing good agreement between predicted and observed burned area included Boreal Asia, Central Asia, Europe, and Temperate North America, where the estimates produced by the regression trees were relatively accurate and precise. Poorest agreement was found for southern-hemisphere South America, where predicted values of burned area are both inaccurate and imprecise; this is most likely a consequence of multiple factors that include extremely persistent cloud cover, and lower quality of the 500-m burned area maps used for calibration. Application of our approach to the nine remaining regions yielded comparatively accurate, but less precise, estimates of monthly burned area. We applied the regional regression trees to the entire archive of Terra MODIS fire data to produce a monthly global burned area data set spanning late 2000 through mid-2005. Annual totals derived from this approach showed good agreement with independent annual estimates available for nine Canadian provinces, the United States, and Russia. With our data set we estimate the global annual burned area for the years 2001-2004 to vary between 2.97 million and 3.74 million km2, with the maximum occurring in 2001. These coarse-resolution burned area estimates may serve as a useful interim product until long-term burned area data sets from multiple sensors and retrieval approaches become available.


2021 ◽  
Author(s):  
Luojia Hu ◽  
Wei Yao ◽  
Zhitong Yu ◽  
Yan Huang

&lt;p&gt;A high resolution mangrove map (e.g., 10-m), which can identify mangrove patches with small size (&lt; 1 ha), is a central component to quantify ecosystem functions and help government take effective steps to protect mangroves, because the increasing small mangrove patches, due to artificial destruction and plantation of new mangrove trees, are vulnerable to climate change and sea level rise, and important for estimating mangrove habitat connectivity with adjacent coastal ecosystems as well as reducing the uncertainty of carbon storage estimation. However, latest national scale mangrove forest maps mainly derived from Landsat imagery with 30-m resolution are relatively coarse to accurately characterize the distribution of mangrove forests, especially those of small size (area &lt; 1 ha). Sentinel imagery with 10-m resolution provide the opportunity for identifying these small mangrove patches and generating high-resolution mangrove forest maps. Here, we used spectral/backscatter-temporal variability metrics (quantiles) derived from Sentinel-1 SAR (Synthetic Aperture Radar) and sentinel-2 MSI (Multispectral Instrument) time-series imagery as input features for random forest to classify mangroves in China. We found that Sentinel-2 imagery is more effective than Sentinel-1 in mangrove extraction, and a combination of SAR and MSI imagery can get a better accuracy (F1-score of 0.94) than using them separately (F1-score of 0.88 using Sentinel-1 only and 0.895 using Sentinel-2 only). The 10-m mangrove map derived by combining SAR and MSI data identified 20,003 ha mangroves in China and the areas of small mangrove patches (&lt; 1 ha) was 1741 ha, occupying 8.7% of the whole mangrove area. The largest area (819 ha) of small mangrove patches is located in Guangdong Province, and in Fujian the percentage of small mangrove patches in total mangrove area is the highest (11.4%). A comparison with existing 30-m mangrove products showed noticeable disagreement, indicating the necessity for generating mangrove extent product with 10-m resolution. This study demonstrates the significant potential of using Sentinel-1 and Sentinel-2 images to produce an accurate and high-resolution mangrove forest map with Google Earth Engine (GEE). The mangrove forest maps are expected to provide critical information to conservation managers, scientists, and other stakeholders in monitoring the dynamics of mangrove forest.&lt;/p&gt;


2016 ◽  
Vol 13 (12) ◽  
pp. 3717-3734 ◽  
Author(s):  
Niels Andela ◽  
Guido R. van der Werf ◽  
Johannes W. Kaiser ◽  
Thijs T. van Leeuwen ◽  
Martin J. Wooster ◽  
...  

Abstract. Landscape fires occur on a large scale in (sub)tropical savannas and grasslands, affecting ecosystem dynamics, regional air quality and concentrations of atmospheric trace gasses. Fuel consumption per unit of area burned is an important but poorly constrained parameter in fire emission modelling. We combined satellite-derived burned area with fire radiative power (FRP) data to derive fuel consumption estimates for land cover types with low tree cover in South America, Sub-Saharan Africa, and Australia. We developed a new approach to estimate fuel consumption, based on FRP data from the polar-orbiting Moderate Resolution Imaging Spectroradiometer (MODIS) and the geostationary Spinning Enhanced Visible and Infrared Imager (SEVIRI) in combination with MODIS burned-area estimates. The fuel consumption estimates based on the geostationary and polar-orbiting instruments showed good agreement in terms of spatial patterns. We used field measurements of fuel consumption to constrain our results, but the large variation in fuel consumption in both space and time complicated this comparison and absolute fuel consumption estimates remained more uncertain. Spatial patterns in fuel consumption could be partly explained by vegetation productivity and fire return periods. In South America, most fires occurred in savannas with relatively long fire return periods, resulting in comparatively high fuel consumption as opposed to the more frequently burning savannas in Sub-Saharan Africa. Strikingly, we found the infrequently burning interior of Australia to have higher fuel consumption than the more productive but frequently burning savannas in northern Australia. Vegetation type also played an important role in explaining the distribution of fuel consumption, by affecting both fuel build-up rates and fire return periods. Hummock grasslands, which were responsible for a large share of Australian biomass burning, showed larger fuel build-up rates than equally productive grasslands in Africa, although this effect might have been partially driven by the presence of grazers in Africa or differences in landscape management. Finally, land management in the form of deforestation and agriculture also considerably affected fuel consumption regionally. We conclude that combining FRP and burned-area estimates, calibrated against field measurements, is a promising approach in deriving quantitative estimates of fuel consumption. Satellite-derived fuel consumption estimates may both challenge our current understanding of spatiotemporal fuel consumption dynamics and serve as reference datasets to improve biogeochemical modelling approaches. Future field studies especially designed to validate satellite-based products, or airborne remote sensing, may further improve confidence in the absolute fuel consumption estimates which are quickly becoming the weakest link in fire emission estimates.


2010 ◽  
Vol 10 (5) ◽  
pp. 2335-2351 ◽  
Author(s):  
D. Chang ◽  
Y. Song

Abstract. Biomass burning in tropical Asia emits large amounts of trace gases and particulate matter into the atmosphere, which has significant implications for atmospheric chemistry and climatic change. In this study, emissions from open biomass burning over tropical Asia were evaluated during seven fire years from 2000 to 2006 (1 March 2000–31 February 2007). The size of the burned areas was estimated from newly published 1-km L3JRC and 500-m MODIS burned area products (MCD45A1). Available fuel loads and emission factors were assigned to each vegetation type in a GlobCover characterisation map, and fuel moisture content was taken into account when calculating combustion factors. Over the whole period, both burned areas and fire emissions showed clear spatial and seasonal variations. The size of the L3JRC burned areas ranged from 36 031 km2 in fire year 2005 to 52 303 km2 in 2001, and the MCD45A1 burned areas ranged from 54 790 km2 in fire year 2001 to 148 967 km2 in 2004. Comparisons of L3JRC and MCD45A1 burned areas using ground-based measurements and other satellite data were made in several major burning regions, and the results suggest that MCD45A1 generally performed better than L3JRC, although with a certain degree of underestimation in forest areas. The average annual L3JRC-based emissions were 123 (102–152), 12 (9–15), 1.0 (0.7–1.3), 1.9 (1.4–2.6), 0.11 (0.09–0.12), 0.89 (0.63–1.21), 0.043 (0.036–0.053), 0.021 (0.021–0.023), 0.41 (0.34–0.52), 3.4 (2.6–4.3), and 3.6 (2.8–4.7) Tg yr−1 for CO2, CO, CH4, NMHCs, NOx, NH3, SO2, BC, OC, PM2.5, and PM10, respectively, whereas MCD45A1-based emissions were 122 (108–144), 9.3 (7.7–11.7), 0.63 (0.46–0.86), 1.1 (0.8–1.6), 0.11 (0.10–0.13), 0.54 (0.38–0.76), 0.043 (0.038–0.051), 0.033 (0.032–0.037), 0.39 (0.34–0.47), 3.0 (2.6–3.7), and 3.3 (2.8–4.0) Tg yr−1. Forest burning was identified as the major source of the fire emissions due to its high carbon density. Although agricultural burning was the second highest contributor, it is possible that some crop residue combustion was missed by satellite observations. This possibility is supported by comparisons with previously published data, and this result may be due to the small size of the field crop residue burning. Fire emissions were mainly concentrated in Indonesia, India, Myanmar, and Cambodia. Furthermore, the peak in the size of the burned area was generally found in the early fire season, whereas the maximum fire emissions often occurred in the late fire season.


2020 ◽  
Vol 12 (4) ◽  
pp. 3229-3246
Author(s):  
Magí Franquesa ◽  
Melanie K. Vanderhoof ◽  
Dimitris Stavrakoudis ◽  
Ioannis Z. Gitas ◽  
Ekhi Roteta ◽  
...  

Abstract. Over the past 2 decades, several global burned area products have been produced and released to the public. However, the accuracy assessment of such products largely depends on the availability of reliable reference data that currently do not exist on a global scale or whose production require a high level of dedication of project resources. The important lack of reference data for the validation of burned area products is addressed in this paper. We provide the Burned Area Reference Database (BARD), the first publicly available database created by compiling existing reference BA (burned area) datasets from different international projects. BARD contains a total of 2661 reference files derived from Landsat and Sentinel-2 imagery. All those files have been checked for internal quality and are freely provided by the authors. To ensure database consistency, all files were transformed to a common format and were properly documented by following metadata standards. The goal of generating this database was to give BA algorithm developers and product testers reference information that would help them to develop or validate new BA products. BARD is freely available at https://doi.org/10.21950/BBQQU7 (Franquesa et al., 2020).


Author(s):  
Matteo Sali ◽  
Lorenzo Busetto ◽  
Mirco Boschetti ◽  
Magi Franquesa ◽  
Emilio Chuvieco ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document