scholarly journals Evaluation of the geoecological and fire situation in case of the oil spillage on the water surface

2021 ◽  
Vol 937 (2) ◽  
pp. 022044
Author(s):  
T S Titova ◽  
R Akhtyamov ◽  
V V Bondarenko ◽  
V L Pavlova

Abstract The work provides an assessment of the geoecological situation during an oil spill on the water surface. The modeling of the process of oil burning on the water surface is carried out, and also a model for estimating the oil burning time during depressurization of the underwater passage of the main oil pipeline is proposed. The assessment of individual and social risk in case of ignition of an oil spill as a result of depressurization of the underwater crossing of the main oil pipeline is given. The fire risk assessment was carried out under the condition of a guillotine rupture of the underwater pipeline, since, despite the lowest frequency of this type of depressurization, the levels of exposure to damaging factors, due to the largest volume of oil spills, will be maximum and will make the main contribution to the magnitude of the fire risk. When forecasting an emergency, a model of the spread of an oil slick along the water surface of a watercourse was developed, which takes into account the wind speed and the speed of the river flow.

2021 ◽  
Vol 2131 (3) ◽  
pp. 032058
Author(s):  
T S Titova ◽  
R Akhtyamov ◽  
V V Bondarenko ◽  
V L Pavlova

Abstract The work provides an assessment of the geoecological situation during an oil spill on the water surface. The modeling of the process of oil burning on the water surface is carried out, and also a model for estimating the oil burning time during depressurization of the underwater passage of the main oil pipeline is proposed. The assessment of individual and social risk in case of ignition of an oil spill as a result of depressurization of the underwater crossing of the main oil pipeline is given. The fire risk assessment was carried out under the condition of a guillotine rupture of the underwater pipeline, since, despite the lowest frequency of this type of depressurization, the levels of exposure to damaging factors, due to the largest volume of oil spills, will be maximum and will make the main contribution to the magnitude of the fire risk. When forecasting an emergency, a model of the spread of an oil slick along the water surface of a watercourse was developed, which takes into account the wind speed and the speed of the river flow.


2021 ◽  
Vol 937 (3) ◽  
pp. 032026
Author(s):  
R Akhtyamov ◽  
T S Titova ◽  
D V Glazkov ◽  
I I Gavrilin

Abstract The article provides an algorithm for organizing oil spill response on the water surface, as well as the results of the analysis of existing methods of oil and oil product spill response. In order to improve the complex of measures to eliminate oil spills on the water surface, the main requirements for oil-absorbing materials are given. It is shown that the localization and elimination of oil and oil products spills on the water surface due to the destruction of the underwater passage of the main oil pipeline requires a set of works that require the use of various methods and the use of the necessary technical means. The developed set of measures for organizing work in response to oil spills on the water surface and the results of the analysis of existing methods for responding to oil and oil products spills will reduce the time for containment and response to the spill, taking into account the optimal choice of technology for cleaning the coastal strip from oil pollution.


2021 ◽  
Vol 2131 (3) ◽  
pp. 032057
Author(s):  
R Akhtyamov ◽  
T S Titova ◽  
D V Glazkov ◽  
I I Gavrilin

Abstract The article provides an algorithm for organizing oil spill response on the water surface, as well as the results of the analysis of existing methods of oil and oil product spill response. In order to improve the complex of measures to eliminate oil spills on the water surface, the main requirements for oil-absorbing materials are given. It is shown that the localization and elimination of oil and oil products spills on the water surface due to the destruction of the underwater passage of the main oil pipeline requires a set of works that require the use of various methods and the use of the necessary technical means. The developed set of measures for organizing work in response to oil spills on the water surface and the results of the analysis of existing methods for responding to oil and oil products spills will reduce the time for containment and response to the spill, taking into account the optimal choice of technology for cleaning the coastal strip from oil pollution.


Author(s):  
Andrey V. Zakharchenko ◽  
◽  
Alexander E. Gonchar ◽  
Roman Y. Shestakov ◽  
Polina V. Pugacheva ◽  
...  

The procedure for action in cases of a threat or an accident at oil pipeline transport facilities is defined in the relevant plans for emergency spillage prevention and response – ESPR. The purpose of the article is to analyze the requirements of the legislation in the field of development and approval of ESPR. The specifics of ESRP development at trunk pipeline facilities in Russia are noted, the US experience in combating oil and oil products spillage is presented. The problematic issues in the development and approval of ESRP, relevant for the domestic system of main oil pipeline transport, have been considered. It was established that the Federal Law No. 207-FL, adopted in July 2020, fundamentally changed the outdated and required revision approach to the coordination and approval of ESRP. At the same time, further work is needed to create a regulatory framework that establishes requirements for ESRP, as well as to improve ESRP, taking into account modern methods of predicting accidents, identifying emergencies, risk-oriented approaches to planning measures to localize and eliminate accidents, the specifics of operating organizations.


2021 ◽  
Author(s):  
Svitlana Liubartseva ◽  
Ivan Federico ◽  
Giovanni Coppini ◽  
Rita Lecci

<p>Being situated in a semi-enclosed Mediterranean lagoon, the Port of Taranto represents a transport, industrial and commercial hub, where the port infrastructure, a notorious steel plant, oil refinery and naval shipyards coexist with highly-dense urban zone, recreation facilities, mussel farms, and vulnerable environmental sites. A Single Buoy Mooring in the center of the Mar Grande used by tankers and subsea pipeline that takes oil directly from tanker to refinery are assumed to stay at risk of accidental oil spills, despite significant progress in technology and prevention.</p><p>The oil spill model MEDSLIK-II (http://medslik-ii.org) coupled to the high resolution Southern Adriatic Northern Ionian coastal Forecasting System (SANIFS http://sanifs.cmcc.it Federico et al., 2017) is used to model hypothetical oil spill scenarios in stochastic mode. 15,000+ hypothetical individual spills are generated from randomly selected start locations: 50% from a buoy and 50% along the subsea pipeline 2018–2020. Individual spill scenario is based on a real crude oil spill caused by a catastrophic pipeline failure happened in Genoa in April 2016 (Vairo et al., 2017). The model outputs are processed statistically to represent quantitively: (1) timing of the oil drift; (2) hazard maps in probability terms at the sea surface and on the coastline; (3) oil mass balance; (4) local-zone contamination assessment.</p><p>The simulations reveal that around 48% of the spilled oil will evaporate during the first 8 hours after the accident. Being transported by highly variable currents and waves, the rest is additionally exposed to multiply reflections from sea walls and concrete wharfs that dominate in the study area. As a result, the oil will be dispersed almost isotropically in the Mar Grande, indicating a rather moderate or small level of concentrations over the minimum threshold values (French McCay, 2016).</p><p>We have concluded that at a probability of 50%, the first oil beaching event will happen within 14 hours after the accident. The most contaminated areas are predicted on and around the nearest Port berths, on the coastlines of the urban area and on the tips of the breakwaters that frame the Mar Grande openings. The remote areas of the West Port and Mar Piccolo are expected to be the least contaminated ones.</p><p>Results are applicable to contingency planning, ecological risk assessment, cost-benefit analysis, and education.</p><p>This work is conducted in the framework of the IMPRESSIVE project (#821922) co-funded by the European Commission under the H2020 Programme.</p><p>References</p><p>Federico, I., Pinardi, N., Coppini, G., Oddo, P., Lecci, R., Mossa, M., 2017. Coastal ocean forecasting with an unstructured grid model in the southern Adriatic and northern Ionian seas. Nat. Hazards Earth Syst. Sci., 17, 45–59, doi: 10.5194/nhess-17-45-2017.</p><p>French McCay, D., 2016. Potential effects thresholds for oil spill risk assessments. Proc. of the 39 AMOP Tech. Sem., Environment and Climate Change Canada, Ottawa, ON, 285–303.</p><p>Vairo, T., Magrì, S., Qualgliati, M., Reverberi, A.P., Fabiano, B., 2017. An oil pipeline catastrophic failure: accident scenario modelling and emergency response development. Chem. Eng. Trans., 57, 373–378, doi: 10.3303/CET1757063.</p>


1973 ◽  
Vol 13 (1) ◽  
pp. 140
Author(s):  
G. N. Keith

The incidence of oil spillage from offshore exploration and production activities is comparatively low but the Santa Barbara and Chevron blowouts remind us of what can happen.There are two things each operator can do to help ensure he is prepared in the event of an emergency. First, a comprehensive inhouse contingency plan should be prepared before commencing operations in an area. The plan will ensure that adequate first-aid measures are on hand at all times and will go on to list the location and availability of additional assistance both in equipment and manpower.Second, the operator should be prepared to participate in the oil industry's National Oil Spills Action Plan. This plan is designed to ensure that the entire resources of the industry can be made available and effectively co-ordinated to combat an oil spill anywhere on the coast of Australia.


1997 ◽  
Vol 1997 (1) ◽  
pp. 1029-1030 ◽  
Author(s):  
Gordon A. Robilliard ◽  
Paul D. Boehm ◽  
Michael J. Amman

ABSTRACT The purpose of the guidance manual is to identify for first responders the basic methods for collecting, preserving, and documenting essential ephemeral samples and data that are needed for NRDA and general environmental assessment in oil spills. The manual assumes that first responders will have limited specialized experience, expertise, and equipment in environmental sampling. Ephemeral data and samples include (a) source oil and freshly spilled oil, (b) the spatial distribution and amount of oil on the water surface and on shorelines, (c) unoiled beach sediments, (d) oil in the water column in unoiled and oiled areas, and (e) selected unoiled intertidal organisms. The manual provides guidance on where, when, and how to collect each type of sample and data. The manual emphasizes the importance of documenting samples and data so that they can be used later to evaluate the environmental impacts of the spilled oil.


2013 ◽  
Vol 61 (2) ◽  
pp. 93-104 ◽  
Author(s):  
Eliete Zanardi-Lamardo ◽  
Marcia Caruso Bícego ◽  
Rolf Roland Weber

An oil pipeline ruptured in May 1994 and 2 700 tons of crude oil leaked into the São Sebastião Channel, affecting several neighboring areas. A program for the monitoring of hydrocarbons in sediments, using the gas chromatography / flame ionization detector methodology, was being undertaken in the area at the time. The data obtained were compared to those of samples collected after the accident to determine the fate of the oil spilled and ascertain its contribution to the environment. The earlier results showed that hydrocarbons were introduced from two different sources: biogenic, mainly from terrestrial plants, and anthropogenic, as oil, in sewage and from shipping. The later data indicated that the site closest to the pipeline rupture had been the most affected. Following that, two stations located at the north entrance of the channel presented the highest n-alkane concentrations, suggesting that the northeasterly wind-driven currents had carried the oil northward. Seven months later, one of these stations, a high-energy site, showed some signs of recovery, but this process was not observed at the other, which seemed to be a low-energy site. In conclusion, the data showed that the aliphatic hydrocarbon analyses were powerful tools for the assessment of the fate of the oil spill and that the northern part of the São Sebastião Channel is more subject to the effects of oil spills.


1973 ◽  
Vol 1973 (1) ◽  
pp. 383-389
Author(s):  
David C. Wooten

ABSTRACT Conventional oil retention booms fail to contain oil in currents above one to two knots. A steamlined boom to operate in currents or while being towed in excess of two knots was designed and tested under varying current and combined wave-current conditions. The boom consists of airfoil-shaped sections which resemble hydrofoils operating at the water surface. The boom is designed so that the stagnation streamline at the leading edge of the foil is located beneath the oil spill under a range of dynamic current and wave conditions. Motion of the boom through the water (or the flow past the boom due to a net current) causes a bow wave which sweeps oil and water over the top of the leading edge of the boom and into a sump. Tests indicated that the streamlined boom profile has a drag coefficient of less than one-third that of conventional boom shapes. Collection efficiency measurements with oil indicate that collection efficiencies greater than 75 percent can be achieved at three knots.


2021 ◽  
Vol 925 (1) ◽  
pp. 012063
Author(s):  
D A Widiawan

Abstract Balikpapan Bay has an oil spill case that attracts many people because it is considered a serious environmental problem and is detrimental to the environment. One of the cases that occurred was the leak of an oil pipeline in Balikpapan Bay due to the wrong anchorage of a ship that occurred on March 31, 2018. Detection of oil spills for three months using Sentinel 1-A satellite data to determine the distribution and analysis of the same oil characteristics from the source of pipe leaks in the Gulf of Balikpapan. The multi-temporal distribution of oil spills in Balikpapan Bay in March, April, and May 2018 has a significant difference in the upstream and mouth of the bay due to a pipe leak on March 31, 2018. Characteristics of upstream oil spills represented by stations 4 and 5 have the anisotropy value is lower than at the mouth of the bay which is represented by stations 1 and 2. The characteristics of the oil spill in Balikpapan Bay have differences before and after the oil spill due to pipe leakage as indicated by the decrease in the anisotropy value.


Sign in / Sign up

Export Citation Format

Share Document