EPHEMERAL DATA COLLECTION GUIDANCE MANUAL, WITH EMPHASIS ON OIL SPILL NRDAS

1997 ◽  
Vol 1997 (1) ◽  
pp. 1029-1030 ◽  
Author(s):  
Gordon A. Robilliard ◽  
Paul D. Boehm ◽  
Michael J. Amman

ABSTRACT The purpose of the guidance manual is to identify for first responders the basic methods for collecting, preserving, and documenting essential ephemeral samples and data that are needed for NRDA and general environmental assessment in oil spills. The manual assumes that first responders will have limited specialized experience, expertise, and equipment in environmental sampling. Ephemeral data and samples include (a) source oil and freshly spilled oil, (b) the spatial distribution and amount of oil on the water surface and on shorelines, (c) unoiled beach sediments, (d) oil in the water column in unoiled and oiled areas, and (e) selected unoiled intertidal organisms. The manual provides guidance on where, when, and how to collect each type of sample and data. The manual emphasizes the importance of documenting samples and data so that they can be used later to evaluate the environmental impacts of the spilled oil.

2021 ◽  
Vol 9 (1) ◽  
pp. 97
Author(s):  
Merv Fingas

The visual appearance of oil spills at sea is often used as an indicator of spilled oil properties, state and slick thickness. These appearances and the oil properties that are associated with them are reviewed in this paper. The appearance of oil spills is an estimator of thickness of thin oil slicks, thinner than a rainbow sheen (<3 µm). Rainbow sheens have a strong physical explanation. Thicker oil slicks (e.g., >3 µm) are not correlated with a given oil appearance. At one time, the appearance of surface discharges from ships was thought to be correlated with discharge rate and vessel speed; however, this approach is now known to be incorrect. Oil on the sea can sometimes form water-in-oil emulsions, dependent on the properties of the oil, and these are often reddish in color. These can be detected visually, providing useful information on the state of the oil. Oil-in-water emulsions can be seen as a coffee-colored cloud below the water surface. Other information gleaned from the oil appearance includes coverage and distribution on the surface.


2012 ◽  
Vol 11 (1-2) ◽  
pp. 100
Author(s):  
C. E. Stringari ◽  
W. C. Marques ◽  
L. F. Mello ◽  
R. T. Edit

Oil spills can generate different effects in different time scales on the marine ecosystem. The numerical modeling of this process is an important tool with low computational cost which provides a powerful appliance to environmental agencies regarding the risk management. In this way, the objective of this work is evaluate the local wind influence in a hypothetical oil spill along the Southern Brazilian shelf. The numerical simulation was carried using the ECOS model (Easy Coupling Oil System), an oil spill model developed at the Universidade Federal do Rio Grande – FURG, coupled with the tridimensional hydrodynamical model TELEMAC3D (EDF, France). The hydrodynamic model provides the velocities, salinity and temperature fields used by the oil spill model to evaluate the behavior and fate of the oil. The results suggest that the local wind influence are the main forcing driven the fate of the spilled oil. The direction and intensity of the currents are important controlling the behavior and the tridimensional transportation of the oil, on the other hand, the turbulent diffusion is important for the horizontal drift of the oil. The weathering results indicate 40% of evaporation and 80% of emulsification, and the combination of these processes leads an increasing of the oil density around 53.4 kg/m³ after 5 days of simulation.


2020 ◽  
Vol 32 (4) ◽  
pp. 412-438
Author(s):  
TERESA SABOL SPEZIO

AbstractIn the face of technology failures in preventing oil from reaching beaches and coasts after catastrophic oil spills in the 1960s and early 1970s, the oil industry and governmental officials needed to quickly reconsider their idea of prevention. Initially, prevention meant stopping spilled oil from coating beaches and coasts. Exploring the presentations at three oil-spill conferences in 1969, 1971 and 1973, this idea of prevention changed as the technological optimism of finding effective methods met the realities of oil-spill cleanup. By 1973, prevention meant stopping oil spills before they happened. This rapid policy transformation came about because the oil industry could not hide the visual evidence of the source of their technology failures. In this century, as policymakers confront invisible pollutants such as pesticides and greenhouse gases, considering ways to visually show the source of the pollution along with the effects could quicken policy decisions.


1991 ◽  
Vol 1991 (1) ◽  
pp. 673-676
Author(s):  
Edward Tennyson

ABSTRACT Recent large oil spills from tankers have reaffirmed the need for continuing technology assessment and research to improve oil-spill response capabilities. The Minerals Management Service (MMS) remains a lead agency in conducting these studies. This paper discusses MMS concerns, as reinforced by the acceleration of its research program in 1990. It briefly assesses the current state-of-the-art technology for major aspects of spill response, including remote sensing, open-ocean containment, recovery, in-situ burning, chemical treating agents, beach-line cleanup, and oil behavior. The paper reports on specific research projects that have begun to yield information that will improve detection and at-sea equipment performance. The first detection project, for which MMS has patent pending, involves the use of shipboard navigational radar to track slicks at relatively long range. The second project involves the use of conventional containment and cleanup in a downwind mode, which is contrary to the traditional procedures. The paper also discusses current research projects, including the development of an airborne, laser-assisted fluorosensor that can determine whether apparent slicks contain oil. Additional projects involve the development of improved strategies for responding to oil in broken-ice conditions, for gaining an improved understanding of the fate and behavior of spilled oil as it affects response strategies, and for reopening and operating the oil and hazardous materials simulated environmental test tank (OHMSETT) facility in Leonardo, New Jersey. Recent progress on the development of safe and environmentally acceptable strategies to burn spilled oil in-situ is also discussed. The OHMSETT facility is necessary for testing prospective improvements in chemical treating agents and to develop standard procedures for testing and evaluating response equipment.


2001 ◽  
Vol 2001 (2) ◽  
pp. 975-981 ◽  
Author(s):  
Paula Jokuty

ABSTRACT When an oil spill occurs, there is an immediate need on the part of spill responders to know the properties of the spilled oil, as these will affect the behavior, fate, and effects of the oil, which will in turn affect the choice of countermeasures. However, it is often difficult or impossible to obtain a sample of the spilled oil, let alone the specialized analysis required to determine its properties, in a manner timely enough to suit the circumstances of an oil spill. Under the scrutiny of the media and the public, answers regarding the identity and predicted behavior of the spilled oil will be expected immediately, if not sooner. In preparation for such emergencies, the Emergencies Science Division (ESD) of Environment Canada has been collecting properties data for crude oils and oil products since 1984. Basic physical properties—density, viscosity, pour point, etc.—and environmentally relevant characteristics—evaporation rates, emulsion formation, chemical dispersibility—are measured. Properties related to health and safety—flash point, volatile organic compounds, sulfur—also are determined. In fact, nearly 20 different types of measurements are made for both fresh and weathered crude oils and oil products. To date data has been collected for more than 400 oils. For ease of access, this information is stored in an electronic database. The database in turn is accessible via the World Wide Web, and is also periodically printed in an easy-to-read catalogue format. The wide variety of data collected in the database also makes it possible to examine both simple and complex relationships that may exist between oil properties and spill behavior. This presentation will review the full scope of information determined and collected by ESD. Using tables and graphs, examples will be presented of the many ways in which this information can be viewed and used by both laymen and experts in the field of oil spills.


2017 ◽  
Vol 2017 (1) ◽  
pp. 2017-076
Author(s):  
Changwoo Nam ◽  
Houxiang Li ◽  
T.C. Mike Chung

ABSTRACT 2017-076 In this paper, we discuss a new class of i-PetroGel oil-superabsorbent technology that has shown a potential solution to the oil spill recovery and cleanup in arctic environments, based on the laboratory tests at Penn State and an open tank test at Ohmsett. This i-PetroGel material is formed by polyolefin polymers that are petroleum downstream products with similar oleophilic and hydrophobic properties of oil molecules. Apart from many oil sorbents based on adsorption, i-PetroGel absorbs oil by absorption (similar to Hydrogel absorbing aqueous solutions) and swells to a large volume. During Ohmsett testing, i-PetroGel flakes spread on top of the affected area showed effective transformation of Alaska North Slope (ANS) oil into a floating gel on the seawater surface, which was effectively recovered by an oleophilic drum skimmer and pumped to a storage tank. The recovered ANS oil-swelled adducts, containing <0.1 wt% water, exhibit similar distillation characteristics as the original ANS oil. Overall, this i-PetroGel technology could potentially provide a comprehensive solution for combating oil spills, with the goal to dramatically reduce the environmental impacts from oil spills and help recover one of the most precious natural resources. i-PetroGel exhibits a combination of desirable properties. ✓ High oil absorption capacity about 35–40 times by weight at 3 and 25 °C. ✓ Suitable to a broad range of hydrocarbons, including complex crude oils, refined oil products (gasolines, diesels, heating oils, etc.), and solvents (toluene, benzene, etc.). ✓ Fast kinetics in capturing the spilled oil. ✓ No detectable water absorption in i-PetroGel. ✓ The resulting oil/i-PetroGel adducts floating on water surface are recovered by skimmer. ✓ The recovered oil/i-Petrogel adducts can be refined as crude oil through standard refining processes. ✓ Cost effective. ✓ No secondary pollution.


1973 ◽  
Vol 1973 (1) ◽  
pp. 383-389
Author(s):  
David C. Wooten

ABSTRACT Conventional oil retention booms fail to contain oil in currents above one to two knots. A steamlined boom to operate in currents or while being towed in excess of two knots was designed and tested under varying current and combined wave-current conditions. The boom consists of airfoil-shaped sections which resemble hydrofoils operating at the water surface. The boom is designed so that the stagnation streamline at the leading edge of the foil is located beneath the oil spill under a range of dynamic current and wave conditions. Motion of the boom through the water (or the flow past the boom due to a net current) causes a bow wave which sweeps oil and water over the top of the leading edge of the boom and into a sump. Tests indicated that the streamlined boom profile has a drag coefficient of less than one-third that of conventional boom shapes. Collection efficiency measurements with oil indicate that collection efficiencies greater than 75 percent can be achieved at three knots.


1979 ◽  
Vol 1979 (1) ◽  
pp. 685-692
Author(s):  
Peter C. Cornillon ◽  
Malcolm L. Spaulding ◽  
Kurt Hansen

ABSTRACT As part of a larger project assessing the environmental impact of treated versus untreated oil spills, a fates model has been developed which tracks both the surface and subsurface oil. The approach used to spread, drift, and evaporate the surface slick is similar to that in most other oil spill models. The subsurface technique, however, makes use of a modified particle-in-cell method which diffuses and advects individual oil/dispersant droplets representative of a large number of similar droplets. This scheme predicts the time-dependent oil concentration distribution in the water column, which can then be employed as input to a fisheries population model. In addition to determining the fate of the untreated spill, the model also allows for chemical treatment and/or mechanical cleanup of the spilled oil. With this capability, the effectiveness of different oil spill control and removal strategies can be quantified. The model has been applied to simulate a 34,840 metric ton spill of a No. 2-type oil on Georges Bank. The concentration of oil in the water column and the surface slick trajectory are predicted as a function of time for chemically treated and untreated spills occurring in April and December. In each case, the impact on the cod fishery was determined and is described in detail in a paper by Reed and Spaulding presented at this conference.


2014 ◽  
Vol 2014 (1) ◽  
pp. 1647-1658 ◽  
Author(s):  
Tim Wadsworth

ABSTRACT Experience has shown that the most time-consuming and costly component of a response to an oil spill is often the treatment or disposal of collected waste. The amount of waste generated is dependent on many factors, some which may be controlled more readily during the response. This paper analyses a number of important incidents as a result of which spilled oil affected shoreline resources with significant resultant clean-up effort. Spills of crude oil and of heavy fuel oil carried as cargo in tankers are reviewed to determine the types and volumes of waste generated and the clean-up methods undertaken to generate that waste. A comparison of the incidents will allow the most effective response methods to be determined, to show the techniques that generated the least volumes of waste. Data from DEEPWATER HORIZON is included to allow a discussion of the associated response. To achieve a practical comparison, the amount of waste is balanced against the amount of oil spilled to determine the oil:waste ratio. This ratio has evolved over many years into a long held guideline, used often for the purpose of contingency planning, that the amount of waste generated during an incident is approximately ten times the amount of oil spilled. This paper shows that with appropriate response actions, the guideline can be upheld.


2005 ◽  
Vol 2005 (1) ◽  
pp. 439-442 ◽  
Author(s):  
Charlie Henry

ABSTRACT Since the Oil Pollution Act of 1990 (OPA 90), dispersants have been used as part of a combined response to mitigate seven oil spills in United States Gulf of Mexico (GOM) waters. Of the dispersant operations reported, four utilized the Regional Response Team VI pre-approval authority to the Federal On-Scene Coordinator (FOSC) that requires a monitoring plan. The successful integration of dispersant pre-authorization along with a fully funded ready response delivery system maintained by industry contributed to the successful use of dispersants to aid in mitigating spilled oil. A key element to gaining the original pre-approval authority was a functional operational monitoring plan. While each response was considered a successful dispersant operation, each incident provided valuable lessons learned that have been integrated into subsequent contingency planning and modifications to existing pre-authorization requirements in the GOM. This paper provides a chronological review of oil spill responses where dispersants were applied in the GOM since OPA 90.


Sign in / Sign up

Export Citation Format

Share Document