scholarly journals Effect of Zeolite on the Compressive Strength of Concrete with Different Types of Cement

2022 ◽  
Vol 955 (1) ◽  
pp. 012002
Author(s):  
I Sudarsono ◽  
S I Wahyudi ◽  
H P Adi ◽  
M D Ikval

Abstract Concrete is a material component in coastal area construction. With the increasing demand for concrete for construction purposes, there have been various innovations in concrete mixtures to improve the quality of the concrete, including the compressive strength value of concrete. In the concrete mixture, the researchers also add additive to the concrete mixture, one alternative is natural zeolite which is widely found in the earth. Research by testing concrete samples with variations of the zeolite mixture 0%, 15%, and 25% uses cement type V. The test results are then compared with the results of other studies using different types of cement. Comparative studies of zeolite concrete test with different types of cement show that the optimum proportion of zeolite is around 10% to 20% of the weight of cement to get the best compressive strength value.

2019 ◽  
Vol 5 (4) ◽  
pp. 13
Author(s):  
Nurul Rochmah ◽  
Gede Sarya

ABSTRAK Semakin banyaknya permintaan akan semen akibat dari pembangunan konstruksi yang memakai material beton semakin meningkat, mengakibatkan semakin lama harga semen mengalami kenaikan. Sehingga dalam penelitian ini untuk meminimalisir pemakaian semen dalam campuran beton, penggunaan semen disibstusikan dengan serbuk yang terbuat dari batu kapur. Dipilih batu kapur karena senyawa yang ada dalam batu kapur mirip dengan senyawa yang di kandung dalam semen. Adapun proporsi yang dipakai dalam substitusi ini menggunakan serbuk batu kapur dengan persentase kelipatan 5% mulai dari 0% sampai 20%. Dari Hasil Uji tekan diperolehuji tekan optimal dari variasi serbuk kapur dan serbuk semen adalah pada variasi 10% sebesar 12,7 N/m2. Kata kunci: campuran beton, optimal, semen, serbuk kapur, uji tekan ABSTRACT The increasing demand for cement as a result of the construction of construction that uses concrete materials has increased resulting in the longer the price of cement has increased. So that in this study to minimize the use of cement in concrete mixtures, the use of cement is discussed with powder made of limestone. Limestone is chosen because the compounds in limestone are similar to compounds contained in cement. The proportion used in this substitution uses limestone powder with a percentage of a multiple of 5% ranging from 0% to 20%. From the compressive test results obtained optimal pressure test from the variation of lime powder and cement powder is at a variation of 10% by 12.7 N/m2. Keywords: concrete mixture, optimal, cement, limestone powder, pressure test


2015 ◽  
Vol 754-755 ◽  
pp. 348-353 ◽  
Author(s):  
Norlia Mohamad Ibrahim ◽  
Leong Qi Wen ◽  
Mustaqqim Abdul Rahim ◽  
Khairul Nizar Ismail ◽  
Roshazita Che Amat ◽  
...  

Compressive strength of concrete is the major mechanical properties of concrete that need to be focused on. Poor compressive strength will lead to low susceptibility of concrete structure towards designated actions. Many researches have been conducted to enhance the compressive strength of concrete by incorporating new materials in the concrete mixture. The dependencies towards natural resources can be reduced. Therefore, this paper presents the results of an experimental study concerning the incorporation of artificial lightweight bubbles aggregate (LBA) into cementations mixture in order to produce comparable compressive strength but at a lower densities. Three concrete mixtures containing various percentages of LBA, (10% - 50% of LBA) and one mixture used normal aggregate (NA) were prepared and characterized. The compressive strength of LBA in concrete was identified to be ranged between 39 MPa and 54 MPa. Meanwhile, the densities vary between 2000 kg/m3 to 2300 kg/m3.


Jurnal CIVILA ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 213
Author(s):  
Asrul Majid ◽  
Hammam Rofiqi Agustapraja

Infrastructure development is one of the important aspects of the progress of a country where most of the constituents of infrastructure are concrete. The most important constituent of concrete is cement because its function is to bind other concrete materials so that it can form a hard mass. The large number of developments using cement as a building material will leave quite a lot of cement bags.In this study, the authors conducted research on the effect of adding cement waste to the compressive strength of concrete. This study used an experimental method with a total of 24 test objects. The test object is in the form of a concrete cylinder with a diameter of 15 cm and a height of 30 cm and uses variations in the composition of the addition of cement waste cement as a substitute for fine aggregate, namely 0%, 2%, 4% and 6%. K200). The compressive strength test was carried out at the age of 7 days and 28 days.The test results show that the use of waste as a partial substitute for fine aggregate results in a decrease in the compressive strength of each mixture. at the age of 7 days the variation of 2% is 16.84 MPa, 4% is 11.32 MPa and for a mixture of 6% is 6.68 MPa. Meanwhile, the compressive strength test value of 28 days old concrete in each mixture decreased by ± 6 MPa. So the conclusion is cement cement waste cannot be used as a substitute for fine aggregate in fc 16.6 (K200) quality concrete because the value is lower than the specified minimum of 16.6 MPa.


2019 ◽  
Vol 23 (3) ◽  
pp. 70-84 ◽  
Author(s):  
Zinta Zimele ◽  
Maris Sinka ◽  
Aleksandrs Korjakins ◽  
Diana Bajare ◽  
Genadijs Sahmenko

Abstract Global warming being increasingly discussed, solutions for reducing emission greenhouse gases become more important in all industry sectors. The total energy consumed in the construction sector contribute up to 1/3 from all greenhouse gases emissions. Large part of it comes from the cement production – 5 % of the total global emissions. The foam concrete is lightweight concrete with good thermal properties and ability to reduce CO2 emissions by reducing the use of cement due to its low density. The aim of this study is to determine impact on the environment with the use of Life Cycle Assessment (LCA) with focus on Global Warming Potential (GWP) for two different compressive strength foam concrete mixtures produced in Latvia by unique intensive mixing technology – turbulence with cavitation effect. Afterwards, the selected foam concrete mixtures are compared with alternative materials with similar compressive strength – aerated concrete and hollow ceramic blocks. The foam concrete mixture having 12.5 MPa compressive strength showed higher CO2 emissions than hallow ceramic block. The majority of CO2 emissions comes from the Portland cement, which is a key element in its composition. On the other hand, the foam concrete mixture having 2.4 MPa compressive strength showed higher CO2 emissions than aerated concrete block. The majority of CO2 emissions are due to foam glass granules, which is the main element contributing to the increased insulation properties of the material. Comparison of each foam concrete with analogue building material by compressive strength shows that the chosen foam concrete mixtures produce greater GWP than alternative materials. This research allows to identify the environmental impacts of different foam concrete mixture components and to improve these mixtures to achieve similar properties with less impact, for example, by replacing foam glass granules with granules made from recycled glass or replacing cement with flay ash, silica fume or recycled glass powder.


Author(s):  
Lawrence Echefulechukwu Obi

This work was necessitated by the observations made at construction sites where artisans and craftsmen were left alone in concrete production. It was discovered that they used inadequate quantity and size of coarse aggregates due to difficulty associated in the mixing as if the coarse aggregates were not needed in concrete production. The research has established that the coarse aggregates and their sizes play critical roles in the development of adequate strength in concrete. It was observed that with proper mixing, the slump test results did not witness shear or collapse type of slump rather there were true slump in all cases of the test. The workability decreased with slight differences when the coarse aggregate size was increased. The increase in the coarse aggregates yielded appreciable increase in the compressive strength. It can therefore be inferred that the quality of concrete in terms of strength can be enhanced through an increase in the coarse aggregate size when proper mix ratio, batching, mixing, transporting, placing and finishings are employed in concrete productions.


2021 ◽  
Vol 27 (4) ◽  
pp. 135-140
Author(s):  
Adrijana Savić ◽  
Robert Peterman

This research evaluates the influence of the different types of concrete mixture, using a shallow type of indentation of wire, having the different edge distance and compressive strength of concrete on splitting resistance in pretensioned concrete railroad sleepers. The investigated compressive strength of concrete was 4500psi. The research was experimental, and the part of this research was formally adapted in Arema StandardsforRailwayEngineering Chapter 30 section 4.2.4.


2007 ◽  
Vol 13 (2) ◽  
pp. 115-122 ◽  
Author(s):  
Marta Kosior-Kazberuk ◽  
Małgorzata Lelusz

Based on experimental results, mathematical models were elaborated to predict the development of compressive strength of concrete with fly ash replacement percentages up to 30 %. Strength of concrete with different types of cement (CEM I 42.5, CEM I 32.5, CEM III 32.5), after 2, 28, 90, 180 days of curing, have been analysed to evaluate the effect of addition content, the time of curing and the type of cement on the compressive strength changes. The adequacy of equations obtained was verified using statistical methods. The test results of selected properties of binders and hardened concrete with fly ash are also included. The analysis showed that concrete with fly ash is characterised by advantageous applicable qualities.


2013 ◽  
Vol 763 ◽  
pp. 199-202
Author(s):  
Chao Yong Yan ◽  
Zhi Hua Li ◽  
Xiao Min Deng

This paper presents a kind of ecological building mortar with a compressive strength of M5.0, M7.5 and M10 , which includes waste residue as cementitious materials, and waste brick powder, waste mortar powder reclaimed sand instead of natural sand as aggregate. The test results shows that (1) mortar water consumption increase when recycled sand volume increases, but its water-retaining capacity goes up;(2) when different types of recycled sand are used instead of natural sand for middle and low strength mortar, there is no significant adverse effect on its strength, and the 28d compressive strength can all meet the designed strength requirements; (3) Little difference exists among the influence of different recycled sand on properties of mortar.


2020 ◽  
Vol 28 (1) ◽  
pp. 106
Author(s):  
Rahelina Ginting ◽  
Winarko Malau

Concrete work is widely used in construction projects now. To get a good quality concrete depends very much on the quality of the constituent materials, namely cement, water, fine aggregate, coarse aggregate, and also the process of working or stirring. In this research, 27 MPa concrete compressive strength will be investigated with various stirring methods (Manual Mix, Molen Mix and Ready Mix). These three methods of stirring certainly have their respective uses in the process, usually Manual, Molen and Ready Mix are used depending on the conditions of the project being worked on. From this test, results are obtained by means of manual stirring, Molen stirring and Ready Mix with compressive strength average: (266,467 kg / cm2) (278,368 kg / cm2) (284,595 kg / cm2). The results of the study stated that the research carried out fulfilled the estimation target 'c = 27 Mpa.


CI-TECH ◽  
2020 ◽  
Vol 1 (01) ◽  
pp. 45-48
Author(s):  
Triaswati ◽  
Srie Subekti ◽  
Sulchan Arifin ◽  
Febri Aditya

Stone dust nowadays is a side product of the stone crushing industry, the quality of which is quite a lot that it becomes a waste that needs to be handled. This study is intended to find out the composition of stone dust by adding some additive substance type D and type F to reach a compressive strength of 350 kg/cm2. The variation of percentage of stone dust on the composition of concrete mixture is 0%, 20%, 40%, 60%, 80%, 100%. The design of concrete mixture composition refers to the procedure of making preparation of the normal concrete mixture. SNI 03-2384-1993. The size of the cylinder test object is 15 cm in diameter and 30 cm in height. The result of this research shows that the mixture using stone dust has quite an effect on the compressive strength of concrete. From the result of the experiment, it is shown that for compressive strength of 350 kg/cm2, we can use 100% of stone dust with a resulted compressive strength of 445 kg/cm2.


Sign in / Sign up

Export Citation Format

Share Document