scholarly journals Plastic bottles waste as attached growth media in the removal of organic and nutrients for small-scale wastewater treatment

2021 ◽  
Vol 1098 (5) ◽  
pp. 052045
Author(s):  
A Nur ◽  
P S Komala
2014 ◽  
Vol 13 (1) ◽  
pp. 145-152 ◽  
Author(s):  
Alireza Valipour ◽  
Seyed Masoud Taghvaei ◽  
Venkatraman Kalyan Raman ◽  
Gagik Badalians Gholikandi ◽  
Shervin Jamshidi ◽  
...  

1988 ◽  
Vol 20 (1) ◽  
pp. 37-48 ◽  
Author(s):  
L. Panneerselvam

In order to reduce the demand for the forest based raw materials by the organised industrial sectors like the large integrated pulp and paper mills, the Government of India started promoting several small-scale pulp and paper mills based on non-wood agricultural residue raw materials. However promotion of these small mills has created another environmental problem i.e. severe water pollution due to non-recovery of chemicals. Because of the typical characteristics like high silica content etc. of the black liquor produced and the subsequent high capital investment needed for a recovery system, it is not economically feasible for the small Indian mills to recover the chemicals. While the quantity of wastewater generated per tonne of paper produced by a small mill is same as from a large integrated pulp and paper mill with a chemical recovery system, their BOD load is four times higher, due to non recovery of chemicals. However the existing wastewater disposal standards are uniform for large and small mills for e.g. 30 mg BOD/l. To meet these standards, the small mills have to install a capital intensive wastewater treatment plant with heavy recurring operating costs. Therefore the feasible alternative is to implement various pollution abatement measures, with the objective of not only reducing the fibre/chemical loss but also to reduce the investment and operating costs of the final wastewater treatment system. To illustrate this approach, a case study on water pollution abatement and control in a 10 TPD mill, will be discussed.


1993 ◽  
Vol 28 (10) ◽  
pp. 1-8 ◽  
Author(s):  
A. Gaber ◽  
M. Antill ◽  
W. Kimball ◽  
R. Abdel Wahab

The implementation of urban village wastewater treatment plants in developing countries has historically been primarily a function of appropriate technology choice and deciding which of the many needy communities should receive the available funding and priority attention. Usually this process is driven by an outside funding agency who views the planning, design, and construction steps as relatively insignificant milestones in the overall effort required to quickly better a community's sanitary drainage problems. With the exception of very small scale type sanitation projects which have relatively simple replication steps, the development emphasis tends to be on the final treatment plant product with little or no attention specifically focused on community participation and institutionalizing national and local policies and procedures needed for future locally sponsored facilities replication. In contrast to this, the Government of Egypt (GOE) enacted a fresh approach through a Local Development Program with the United States AID program. An overview is presented of the guiding principals of the program which produced the first 24 working wastewater systems including gravity sewers, sewage pumping stations and wastewater treatment plants which were designed and constructed by local entities in Egypt. The wastewater projects cover five different treatment technologies implemented in both delta and desert regions.


1997 ◽  
Vol 35 (6) ◽  
pp. 37-44 ◽  
Author(s):  
Boran Zhang ◽  
Kazuo Yamamoto ◽  
Shinichiro Ohgaki ◽  
Naoyuki Kamiko

Activated sludges taken from full-scale membrane separation processes, building wastewater reuse system (400m3/d), and two nightsoil treatment plants (50m3/d) as well as laboratory scale membrane separation bioreactor (0.062m3/d) were analyzed to characterize membrane separation activated sludge processes (MSAS). They were also compared with conventional activated sludges(CAS) taken from municipal wastewater treatment plants. Specific nitrification activity in MSAS processes averaged at 2.28gNH4-N/kgMLSS.h were higher than that in CAS processes averaged at 0.96gNH4-N/kgMLSS.h. The denitrification activity in both processes were in the range of 0.62-3.2gNO3-N/kgMLSS.h without organic addition and in the range of 4.25-6.4gNO3-N/kgMLSS.h with organic addition. The organic removal activity in nightsoil treatment process averaged at 123gCOD/kgMLSS.h which was significantly higher than others. Floc size distributions were measured by particle sedimentation technique and image analysis technique. Flocs in MSAS processes changed their sizes with MLSS concentration changes and were concentrated at small sizes at low MLSS concentration, mostly less than 60 μm. On the contrary, floc sizes in CAS processes have not much changed with MLSS concentration changes and they were distributed in large range. In addition, the effects of floc size on specific nitrification rate, denitrification rate with and without organic carbon addition were investigated. Specific nitrification rate was decreased as floc size increased. However, little effect of floc size on denitrification activity was observed.


1997 ◽  
Vol 36 (1) ◽  
pp. 129-137 ◽  
Author(s):  
Vibeke R. Borregaard

In the upgrade of wastewater treatment plants to include biological nutrient removal the space available is often a limiting facor. It may be difficult to use conventional suspended growth processes (i.e. activated sludge) owing to the relatively large surface area required for these processes. Recent years have therefore seen a revived interest in treatment technologies using various types of attached growth processes. The “new” attached growth processes, like the Biostyr process, utilise various kinds of manufactured media, e.g. polystyrene granules, which offer a high specific surface area, and are therefore very compact. The Biostyr plants allow a combination of nitrification-denitrification and filtration in one and the same unit. The results obtained are 8 mg total N/l and an SS content normally below 10 mg/l. The plants in Denmark which have been extended with a Biostyr unit have various levels of PLC control and on-line instrumentation.


2018 ◽  
Vol 2018 (16) ◽  
pp. 1071-1083
Author(s):  
Francois Jolibois ◽  
Kar Munirathinam ◽  
Lauren Lundquist ◽  
David Marrs ◽  
Perry Lankford

2018 ◽  
Vol 78 (6) ◽  
pp. 1304-1311 ◽  
Author(s):  
I. Mishima ◽  
M. Hama ◽  
Y. Tabata ◽  
J. Nakajima

Abstract Small-scale wastewater treatment plants (SWTPs), called Johkasou, are widely used as decentralized and individual wastewater treatment systems in sparsely populated areas in Japan. Even in SWTPs, nutrients should be removed to control eutrophication. An iron electrolysis method is effective to remove phosphorus chemically in SWTPs. However, it is necessary to determine the precise conditions under which phosphorus can be effectively and stably removed in full scale SWTPs for a long period. Therefore, long-term phosphorus removal from SWTPs was investigated and optimum operational conditions for phosphorus removal by iron electrolysis were analyzed in this study. Efficient phosphorus removal can be achieved for a long time by adjusting the amount of iron against the actual population equivalent. The change of the recirculation ratio had no negative effect on overall phosphorus removal. Phosphorus release to the bulk phase was prevented by the accumulated iron, which was supplied by iron electrolysis, resulting in stable phosphorus removal. The effect of environmental load reduction due to phosphorus removal by iron electrolysis was greater than the cost of power consumption for iron electrolysis.


2019 ◽  
Vol 2019 (29) (2) ◽  
pp. 49-57
Author(s):  
Tamás Karches ◽  
Endre Salamon ◽  
Tamás Berek

Sign in / Sign up

Export Citation Format

Share Document