scholarly journals Flexural Behavior of Aluminum Honeycomb Core Sandwich Structure

Author(s):  
Vidyasagar Matta ◽  
J Suresh Kumar ◽  
Duddu Venkataraviteja ◽  
Guggulla Bharath Kumar Reddy
Author(s):  
M.R. Ashok ◽  
M. Manojkumar ◽  
P.V. Inbanaathan ◽  
R. Shanmuga Prakash

This paper details the fabrication and flexural testing of sandwich structure with Aluminium honeycomb core with Aluminium face skins. The material for the face skin is aluminium 1100 and for the core is Aluminium AA8011. The cell size obtained by fabrication is 7mm. The specimen is prepared and tested as per the ASTM standard C393/C393M-11 on a three-point bending test to obtain the ultimate core shear strength and the face skin strength. Finite element analysis is also carried out to validate the experimental test.


2017 ◽  
Vol 21 (1) ◽  
pp. 211-229 ◽  
Author(s):  
Recep Gunes ◽  
Kemal Arslan ◽  
M Kemal Apalak ◽  
JN Reddy

This study investigates damage mechanisms and deformation of honeycomb sandwich structures reinforced by functionally graded face plates under ballistic impact. The honeycomb sandwich structure consists of two identical functionally graded face sheets, having different material compositions through the thickness, and an aluminum honeycomb core. The functionally graded face sheets consist of ceramic (SiC) and aluminum (Al 6061) phases. The through-thickness mechanical properties of face sheets are assumed to vary according to a power-law. The locally effective material properties are evaluated using the Mori–Tanaka scheme. The effect of material composition of functionally graded face sheets on the ballistic performance of honeycomb sandwich structures was investigated using the finite element method and the penetration and perforation threshold energy values on ballistic performance and ballistic limit of the sandwich structures are determined. The contribution of the honeycomb core on the ballistic performance of the sandwich structure was evaluated by comparing with spaced plates (without honeycomb core) in terms of the residual velocity, kinetic energy, and damage area.


2013 ◽  
Vol 2013 ◽  
pp. 1-20 ◽  
Author(s):  
Chang Qi ◽  
Shu Yang ◽  
Dong Wang ◽  
Li-Jun Yang

The dynamic responses of honeycomb sandwich panels (HSPs) subjected to in-plane projectile impact were studied by means of explicit nonlinear finite element simulations using LS-DYNA. The HSPs consisted of two identical aluminum alloy face-sheets and an aluminum honeycomb core featuring three types of unit cell configurations (regular, rectangular-shaped, and reentrant hexagons). The ballistic resistances of HSPs with the three core configurations were first analyzed. It was found that the HSP with the reentrant auxetic honeycomb core has the best ballistic resistance, due to the negative Poisson’s ratio effect of the core. Parametric studies were then carried out to clarify the influences of both macroscopic (face-sheet and core thicknesses, core relative density) and mesoscopic (unit cell angle and size) parameters on the ballistic responses of the auxetic HSPs. Numerical results show that the perforation resistant capabilities of the auxetic HSPs increase as the values of the macroscopic parameters increase. However, the mesoscopic parameters show nonmonotonic effects on the panels' ballistic capacities. The empirical equations for projectile residual velocities were formulated in terms of impact velocity and the structural parameters. It was also found that the blunter projectiles result in higher ballistic limits of the auxetic HSPs.


Forests ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 886 ◽  
Author(s):  
Jingxin Hao ◽  
Xinfeng Wu ◽  
Gloria Oporto-Velasquez ◽  
Jingxin Wang ◽  
Gregory Dahle

The transverse compression property is one of most important aspects of the mechanical performance of a sandwich structure with a soft core. An experiment, analytical method and three digital strain measurement systems were applied to investigate the compression behavior and the failure mechanism for a wood-based sandwich structure with a novel Taiji honeycomb core. The results show that the structure of the Taiji honeycomb can improve dramatically on compression strength and modulus of composite compared to that of a traditional hexagonal one. There was no obvious deflection in the transverse direction detected by the three digital images before the buckling of the honeycomb occurred. An analytical equation between the key structure parameters and properties of the composite were applied to predict its threshold stresses and modulus. The properties of the core determine the strength of the entire structure, but the compression strength decreases slightly with an elevated core thickness, and its effect on the compression modulus can be neglected. Both the surface sheets and loading speed have little impact on the compression strength and modulus, respectively.


Author(s):  
Qinglong An ◽  
Jiaqiang Dang ◽  
Weiwei Ming ◽  
Kunxian Qiu ◽  
Ming Chen

The honeycomb sandwich structure has been widely used in the aerospace industry due to its high specific strength and stiffness. However, the machining defects of the aluminum honeycomb core (AHC) have become the key factor that restricts its application. In this paper, the defects' characteristics including the formation mechanism, distribution characteristic, and cutting process of honeycomb cell walls during AHC milling process were experimentally investigated. Furthermore, using normalized Cockcroft and Latham ductile fracture criterion and Johnson–Cook (JC) constitutive model, the numerical simulation of the AHC machining process was conducted concerning the entrance angle. It is indicated that six categories of milling defects are obtained and the quantity as well as distribution regularity of AHC milling defects are determined by the double effects of both the entrance angle and cutting force. Most of the surface defects of honeycomb materials were found concentrated in three regions, named by zones I–III, in which extruding, shear, and tensile deformation was mainly generated, respectively. Besides, the finite element simulation results also agree well with the experimental findings. Finally, a novel optimization method to avoid defects in the aforementioned regions by controlling the entrance angle of all the honeycomb walls during the cutting process was proposed in this paper. Meanwhile, the optimal control equations of the entrance angle for all cell walls were derived. This method was verified by milling experiments at last and the results showed that the optimization effect was obvious since the quality of the machined surface was greatly improved.


2017 ◽  
Vol 21 (6) ◽  
pp. 1930-1952 ◽  
Author(s):  
Abhendra K Singh ◽  
Barry D Davidson ◽  
Alan T Zehnder ◽  
Benjamin PJ Hasseldine

An analytical model is developed to predict the loading and unloading response, as well as the residual dent diameter and dent depth, of carbon/epoxy-aluminum honeycomb core composite sandwich structures undergoing quasi-static indentation loading. The model considers damage created using spherical indenters and is valid up to the barely visible external damage threshold. The initial low load regime (until the onset of core crushing) is modeled using a combination of local Hertzian indentation of an elastic half-space and small deflection plate theory of a circular plate on an elastic foundation. For loads above those required to cause core crushing, the model uses the Rayleigh-Ritz method of energy minimization with the total system energy determined using a combination of face sheet bending energy, face sheet membrane energy and work done to the core during both elastic deformation and crushing. Degraded face sheet properties are used in the model beyond the onset of face sheet delamination, which is predicted using Griffith’s energy criterion. The model is validated using experimental results for sandwich structures consisting of quasi-isotropic 8- (thin) and 16- (thick) ply carbon/epoxy face sheets and aluminum honeycomb cores. The results show that the overall mechanics of the model are fundamentally correct and reflective of physical behavior. Thus, in its present form the model shows promise as a preliminary design tool.


2005 ◽  
Vol 297-300 ◽  
pp. 2752-2757 ◽  
Author(s):  
Cheol Won Kong ◽  
Se Won Eun ◽  
Jae Sung Park ◽  
Ho Sung Lee ◽  
Young Soon Jang ◽  
...  

When comparing composite sandwich analysis with an exact solution, the results of finite element modeling with an ANSYS shell 91 element agreed well with the exact solution. The practical applications of the shell 91 element are demonstrated with a four-point bend test conducted on sandwich beam specimens. The specimens comprised carbon/epoxy fabric face sheets and a honeycomb core. Two kinds of honeycomb cores were used to fabricate the composite sandwich specimens: an aluminum one and a glass/phenolic one. The predictions with the shell 91 element were also agreed well with the experimental results. A variety of tests was conducted; namely, a long beam flexural test, a short beam shear test, a flatwise tensile test, a flatwise compression test and an edge compression test. The sandwich plate with the aluminum honeycomb core had a specific bending stiffness that was 1.7 to 2.0 times higher than that of the sandwich plate with the glass/ phenolic honeycomb core.


Sign in / Sign up

Export Citation Format

Share Document