scholarly journals Formation of Sol Gel Dried Droplets of Carbon Doped Titanium Dioxide (TiO2) at Low Temperature via Electrospraying

Author(s):  
S U Halimi ◽  
S Abd Hashib ◽  
N F Abu Bakar ◽  
S N Ismail ◽  
M Nazli Naim ◽  
...  
Antioxidants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 880 ◽  
Author(s):  
Chun-Chen Yang ◽  
Chong-Xuan Wang ◽  
Che-Yung Kuan ◽  
Chih-Ying Chi ◽  
Ching-Yun Chen ◽  
...  

Sonodynamic therapy is an effective treatment for eliminating tumor cells by irradiating sonosentitizer in a patient’s body with higher penetration ultrasound and inducing the free radicals. Titanium dioxide has attracted the most attention due to its properties among many nanosensitizers. Hence, in this study, carbon doped titanium dioxide, one of inorganic materials, is applied to avoid the foregoing, and furthermore, carbon doped titanium dioxide is used to generate ROS under ultrasound irradiation to eliminate tumor cells. Spherical carbon doped titanium dioxide nanoparticles are synthesized by the sol-gel process. The forming of C-Ti-O bond may also induce defects in lattice which would be beneficial for the phenomenon of sonoluminescence to improve the effectiveness of sonodynamic therapy. By dint of DCFDA, WST-1, LDH and the Live/Dead test, carbon doped titanium dioxide nanoparticles are shown to be a biocompatible material which may induce ROS radicals to suppress the proliferation of 4T1 breast cancer cells under ultrasound treatment. From in vivo study, carbon doped titanium dioxide nanoparticles activated by ultrasound may inhibit the growth of the 4T1 tumor, and it showed a significant difference between sonodynamic therapy (SDT) and the other groups on the seventh day of the treatment.


2013 ◽  
Vol 452 (1) ◽  
pp. 211-214 ◽  
Author(s):  
O. I. Gyrdasova ◽  
I. V. Baklanova ◽  
M. A. Melkozerova ◽  
V. N. Krasil’nikov ◽  
V. G. Bamburov

2013 ◽  
Vol 788 ◽  
pp. 246-249 ◽  
Author(s):  
Zhi Wang ◽  
Zhi Qiang Yang

The dispersion of carbon doped titanium dioxide (TiO2) powder in aqueous solution was studied. The spectrophotometer method was used to determine the effects of dispersant additive ratio, ultrasonic time and pH value on the dispersion of TiO2. The results show that the carbon doped titanium dioxide aqueous solution was found to have the optimum dispersion performance when the mass ratio of sodium hexametaphosphate (SHMP)/TiO2/water is 1:50:100, the ultrasonic time is 15min and the pH value of the solution is 10.


RSC Advances ◽  
2015 ◽  
Vol 5 (104) ◽  
pp. 85586-85591 ◽  
Author(s):  
Francesca Cuomo ◽  
Francesco Venditti ◽  
Andrea Ceglie ◽  
Antonella De Leonardis ◽  
Vincenzo Macciola ◽  
...  

Visible light activated carbon doped titanium dioxide fully works in the removal of total phenols from olive mill wastewater.


2019 ◽  
Vol 946 ◽  
pp. 181-185 ◽  
Author(s):  
Sergei N. Fedorov ◽  
Vladimir Yuryevich Bazhin ◽  
Vladimir G. Povarov

Titanium dioxide has a special feature: anatase, to rutile transformation which was considered in our investigations. It is especially important to keep anatase form of titanium dioxide for photocatalytic materials, different ceramics with tribo-chemical properties, self-cleaning coatings and self-sterilizing coatings. For that only one of the titanium dioxide forms is more suitable – anatase, which is more active but not stable, because it transforms to rutile during the time or with the temperature increase loses its activity. Different methods of stabilising anatase have been considered in the paper. Several doping agents have been determined and it was chosen fluorine ion to modify titanium dioxide. Stabilization of anatase is achieved by preparing the reaction mixture by a sol-gel method with hydrofluoric acid. It has shown thermodynamic data, results of experiment, temperatures of anatase to rutile transformation of non-doped and doped titanium dioxide, its X-Ray diffraction and TGA. It is proved that titanium dioxide doped by fluorine ion keeps anatase form till the temperature is more than 1000 °C.


2009 ◽  
Vol 114 (1) ◽  
pp. 90-98 ◽  
Author(s):  
Xuejun Quan ◽  
Qinghua Zhao ◽  
Huaiqin Tan ◽  
Xuemei Sang ◽  
Fuping Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document