scholarly journals Study on seismic residual deformation test of reinforced soil

Author(s):  
Bing He ◽  
Jianming Zhao ◽  
Qiwang Liu ◽  
Xiaosheng Liu ◽  
Kaibin Zhu ◽  
...  
Author(s):  
M.A. Mogilevsky ◽  
L.S. Bushnev

Single crystals of Al were loaded by 15 to 40 GPa shock waves at 77 K with a pulse duration of 1.0 to 0.5 μs and a residual deformation of ∼1%. The analysis of deformation structure peculiarities allows the deformation history to be re-established.After a 20 to 40 GPa loading the dislocation density in the recovered samples was about 1010 cm-2. By measuring the thickness of the 40 GPa shock front in Al, a plastic deformation velocity of 1.07 x 108 s-1 is obtained, from where the moving dislocation density at the front is 7 x 1010 cm-2. A very small part of dislocations moves during the whole time of compression, i.e. a total dislocation density at the front must be in excess of this value by one or two orders. Consequently, due to extremely high stresses, at the front there exists a very unstable structure which is rearranged later with a noticeable decrease in dislocation density.


Author(s):  
Volodymyr Karedin ◽  
Nadiya Pavlenko

CREDO RADON UA software provides an automated calculation of the strength of the pavement structures of non-rigid and rigid types, as well as the calculation of the strengthening of existing structures. In the article, one can see the main features and functionality of the CREDO RADON UA software, the main points in the calculations according to the new regulations. Information support of the design process includes necessary databases, informational and helping materials that make up the full support of the pavement design process. The concept of CREDO RADON UA 1.0 software is made on the use of elasticity theory methods in calculations of initial information models of pavements. Performing optimization calculations, the roadwear in CREDO RADON UA is designed in such a way that no unacceptable residual deformation occurs under the influence of short-term dynamic or static loading in the working layer of the earth bed and in the structural layers during the lifetime of the structure. The calculation algorithms were made in accordance with the current regulatory documents of Ukraine. CREDO RADON UA software allows user to create information bases on road construction materials and vehicles as part of the traffic flow for calculations. The presented system of automated modeling makes it easier for the customer to control the quality of design solutions, to reasonably assign designs to layers of reinforcement, to quickly make comparisons of calculations of different designs for the optimal use of allocated funds. Prospects for further improvement of the program should be the results of theoretical and experimental studies on filling the databases, which are used as information support for automated design of road structures. Keywords: CREDO RADON UA, road, computer-aided design, repair project, road pavement, strengthening, construction, rigid pavement, elasticity module, a transport stream, calculation method, information support, dynamic or static loading.


1993 ◽  
Author(s):  
Kara L. Olen ◽  
Richard J. Fragaszy ◽  
Michael R. Purcell ◽  
Kenneth W. Cargill

Author(s):  
Canxing Qiu ◽  
Jiawang Liu ◽  
Jun Teng ◽  
Zuohua Li ◽  
Xiuli Du

Shape memory alloys (SMAs) gained increasing attentions from the perspective of seismic protection, primarily because of their excellent superelasticity, satisfactory damping and high fatigue life. However, the superelastic strain of SMAs has an upper limit, beyond which the material completes the austenite to martensite phase transformation and is followed by noticeable strain hardening. The strain hardening behavior would not only induce high force demand to the protected structures, but also cause unrecoverable deformation. More importantly, the SMAs may fracture if the deformation demand exceeds their capacity under severe earthquakes. In the case of installing SMA braces (SMABs) in the multi-story concentrically braced frames (CBFs), the material failure would lead to the malfunction of SMABs and this further causes building collapse. The friction mechanism could behave as a “fuse” through capping the strength demand at a constant level. Therefore, this paper suggests connecting the SMAB with a friction damper to achieve a novel brace, i.e. the SMA-friction damping brace (SMAFDB). A proof-of-concept test was carried out on a homemade specimen and the test results validated the novel brace behaves in a desirable manner. In addition, to explore the seismic response characteristics of the SMAFDB within structures, a six-story CBF equipped with SMAFDBs was designed and compared against those incorporated with SMABs or friction damping braces (FDBs) at the frequently occurred earthquake (FOE), design basis earthquake (DBE) and maximum considered earthquake (MCE). The comparative results show the SMAFDB is superior to the counterparts. Under the FOE and DBE ground motions, the SMAFDBs successfully eliminated residual deformations as the SMABs do, and achieved identical maximum interstory drift as the FDBs. Under the MCE ground motions, the SMAFDBs not only well addressed the brace failure problem that was possibly encountered in the SMABs, but also better controlled residual deformation than the FDBs.


Author(s):  
Ripon Hore ◽  
Sudipta Chakraborty ◽  
Ayaz Mahmud Shuvon ◽  
Md. Fayjul Bari ◽  
Mehedi A. Ansary

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2743
Author(s):  
Seongnoh Ahn ◽  
Jae-Eun Ryou ◽  
Kwangkuk Ahn ◽  
Changho Lee ◽  
Jun-Dae Lee ◽  
...  

Ground reinforcement is a method used to reduce the damage caused by earthquakes. Usually, cement-based reinforcement methods are used because they are inexpensive and show excellent performance. Recently, however, reinforcement methods using eco-friendly materials have been proposed due to environmental issues. In this study, the cement reinforcement method and the biopolymer reinforcement method using sodium alginate were compared. The dynamic properties of the reinforced ground, including shear modulus and damping ratio, were measured through a resonant-column test. Also, the viscosity of sodium alginate solution, which is a non-Newtonian fluid, was also explored and found to increase with concentration. The maximum shear modulus and minimum damping ratio increased, and the linear range of the shear modulus curve decreased, when cement and sodium alginate solution were mixed. Addition of biopolymer showed similar reinforcing effect in a lesser amount of additive compared to the cement-reinforced ground, but the effect decreased above a certain viscosity because the biopolymer solution was not homogeneously distributed. This was examined through a shear-failure-mode test.


Sign in / Sign up

Export Citation Format

Share Document