scholarly journals Influence the Filler Metal Containing Zirconium on the Weld Metal Porosity of The MIG Welded Aluminum Alloy 5083

Author(s):  
Wahidun Adam ◽  
Winarto Winarto ◽  
Sunoto Mudiantoro
2017 ◽  
Vol 31 (16-19) ◽  
pp. 1744040
Author(s):  
Dengquan Han ◽  
Yuanxing Li ◽  
Yongpan He ◽  
Sifu Qiu ◽  
Hui Chen

Aluminum alloy 5083 was joined with Sn–[Formula: see text]Zn ([Formula: see text], 5, 9, 30 and 60 wt.%) filler metal by ultrasonic soldering at 400[Formula: see text]C. The joint microstructure consisted of [Formula: see text]-Sn and [Formula: see text]-Al solid–solution phases when using pure Sn solder. Zn-rich phases were observed in the joints with Sn–Zn filler metal. The Zn-rich phases grew thicker and larger with the increase in Zn content in the filler metal. The joints soldered with Sn–30Zn filler metal reached a maximum shear strength of 70 MPa. Joint cracking occurred at the interface of pure Sn and Sn–9Zn solders as indicated by SEM observation of the fracture surfaces. The locations of the fracture surface moved from the interface to the seam when using the Sn–30Zn or Sn–60Zn filler metal. The coarse Zn-rich phases were also observed on the fracture surface using Sn–60Sn solder, which results in a shear strength reduction of the joints.


2020 ◽  
Vol 38 (8A) ◽  
pp. 1236-1245
Author(s):  
Muna K. Abbass ◽  
Jihad G. Abd Ul-Qader

This study presents an appropriate filler metal or welding electrode to join aluminum alloy (AA2024-T3) sheet of 3.2 mm thickness with a square butt joint using Gas Tungsten Arc Welding (GTAW) process. This process was carried out at three different welding currents with three various filler metals: ER4047 (12% Si), ER4043 (5% Si), and ER5356 (5% Mg). Experiments were conducted to investigate the microstructure and the mechanical properties. The effect of various filler metals upon the weld joints quality were analyzed via an X-ray radiographic and tensile test. Hardness test, microstructures, SEM, and XRD also conducted to the welded specimens. It was found that the best result was at 100 Ampere with using filler metal (ER5356) which produced the highest strength of 240 MPa in comparison with welded joints with utilizing fillers (ER4043) and (ER4047) having values of 235 MPa and 225 MPa, correspondingly. The hardness results showed that the highest hardness values were at the weld metal for ER4047 and ER4043, then decreased to HAZ and increased in the base metal. While in the case of ER5356, the highest hardness was in HAZ and decreased in the weld metal. The fractography of the fracture surface of the welded joints after the tensile test was analyzed using SEM.


2015 ◽  
Vol 658 ◽  
pp. 151-155 ◽  
Author(s):  
Supachai Sukawet ◽  
Prapas Muangjunburee

The repair welding of aluminum alloy 5083 was studied using Gas Metal Arc welding (GMAW) process. The effect of heat cycles from welding was investigated in some details. Butt joints of 6 mm and 3 mm thick were welded with 5356 filler metal. Then weld was removed by grinding and repeatedly welded again for 2 times. After each repair weld, the weld was assessed by macrostructure, microstructure and mechanical tests. The results revealed porosities of all weld samples. The repair welds indicated lower tensile strength compared with the new welds. In addition, all tensile strengths were much lower than the base metal. All samples were fractured at the weld metal.


Author(s):  
Changqing Ye ◽  
Weiguo Zhai ◽  
Guangyao Lu ◽  
Qingsong Liu ◽  
Liang Ni ◽  
...  

In this paper, shielded metal arc welding on the dissimilar joint between 2205 duplex stainless steel and composite bimetallic plates (304 L stainless steel/10CrNi3MoV steel) with a filler metal E2209 was performed. Furthermore, the microstructure, phase, mechanical properties and intergranular corrosion resistance of the joints were investigated and element distributions of the interfaces were characterized. The results show that austenite transformed to ferrite under the influence of welding thermal cycle, and then a large amount of ferrite appeared in heat affected zone (HAZ) of 2205 duplex stainless steel. Coarse bainite grains were formed in HAZ of the 10CrNi3MoV steel near the fusion line with high temperature welding thermal cycle. Fine granular bainite was also generated in HAZ of 10CrNi3MoV steel due to the relatively short exposure time to the active temperature of grain growth. Local peak temperature near the base 10CrNi3MoV steel was still high enough to recrystallize the 10CrNi3MoV steel to form partial-recrystallization HAZ due to phase change. The filler metal was compatible with the three kinds of base materials. The thickness of the elemental diffusion interfaces layers was about 100 µm. The maximum microhardness value was obtained in the HAZ of 2205 duplex stainless steel (287 ± 14 HV), and the minimum one appeared in HAZ of SS304L (213 ± 5 HV). The maximum tensile strength of the welded joint was about 670 ± 6 MPa, and the tensile specimens fractured in ductile at matrix of the composite bimetallic plates. The impact energy of the weld metal and HAZ of the 10CrNi3MoV steel tested at –20 °C were 274 ± 6 J and 308 ± 5 J, respectively. Moreover, the intergranular corrosion resistance of the weldment including 304 L stainless steel, weld metal, HAZs and 2205 duplex stainless steel was in good agreement with the functional design requirements of materials corrosion resistance.


2018 ◽  
Vol 197 ◽  
pp. 12007 ◽  
Author(s):  
Ekak Novianto ◽  
Priyo Tri Iswanto ◽  
Mudjijana Mudjijana

Aluminum alloy 5083 H116 has an exceptional performance in extreme environments, moderately high strength, outstanding corrosion resistance in salt water and high impact strength at cryogenic temperature. In the present study, Aluminum alloy AA 5083 H116 plates were joined by tungsten inert gas (TIG) process by single and double sided welding. Welding current used was 53 A and 80 A with the addition of purging gas during welding process. The effects on micro structure and mechanical properties like surface hardness and tensile strength of the welded region were studied. The results have shown that optimum current out of the two weld current used is 53 A. Better microstructures, tensile and hardness were found in the welded joint for the weld current 53 A where the tensile obtained in the softened zone was approximately 87% than that of the base metal (BM). With increasing of TIG current, the width of PMZ increased. In addition, the doubled sided welding sequence also produced broader PMZ area.


Author(s):  
R Pramod ◽  
N Siva Shanmugam ◽  
C K Krishnadasan ◽  
G Radhakrishnan ◽  
Manu Thomas

This work mainly focuses on designing a novel aluminum alloy 6061-T6 pressure vessel liner intended for use in launch vehicles. Fabrication of custom-made welding fixtures for the assembly of liner parts, namely two hemispherical domes and end boss, is illustrated. The parts of the liner are joined using the cold metal transfer welding process, and the welding trials are performed to arrive at an optimized parametric range. The metallurgical characterization of weld joint reveals the existence of dendritic structures (equiaxed and columnar). Microhardness of base and weld metal was 70 and 65 HV, respectively. The tensile strength of base and weld metal was 290 and 197 MPa, respectively, yielding a joint efficiency of 68%. Finite-element analysis of a uniaxial tensile test was performed to predict the tensile strength and location of the fracture in base and weld metal. The experimental and predicted tensile test results were found to be in good agreement.


2005 ◽  
pp. 309-312
Author(s):  
Xiao Mu Zhang ◽  
Zhi Yong Zhang ◽  
Yun Peng ◽  
Zhi Ling Tian ◽  
Chang Hong He ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document