scholarly journals Compressive strength of geopolymer concrete with fly-ash from Paiton Steam Power Plant and variations of substitution sodium silicate (Na2SiO3) with natural zeolite

Author(s):  
I N Amini ◽  
Krisnamurti ◽  
W T Wahyuningtyas
2019 ◽  
Vol 2 (2) ◽  
pp. 65
Author(s):  
Purwanto P. ◽  
Himawan Indarto

Portland cement production process which is the conventional concrete constituent materials always has an impact on producing carbon dioxide (CO2) which will damage the environment. To maintain the continuity of development, while maintaining the environment, Portland cement substitution can be made with more environmentally friendly materials, namely fly ash. The substitution of fly ash material in concrete is known as geopolymer concrete. Fly ash is one of the industrial waste materials that can be used as geopolymer material. Fly ash is mineral residue in fine grains produced from coal combustion which is mashed at power plant power plant [15]. Many cement factories have used fly ash as mixture in cement, namely Portland Pozzolan Cement. Because fly ash contains SiO2, Al2O3, P2O3, and Fe2O3 which are quite high, so fly ash is considered capable of replacing cement completely.This study aims to obtain geopolymer concrete which has the best workability so that it is easy to work on (Workable Geopolymer Concrete / Self Compacting Geopolymer Concrete) and obtain the basic characteristics of geopolymer concrete material in the form of good workability and compressive strength. In this study, geopolymer concrete is composed of coarse aggregate, fine aggregate, fly ash type F, and activators in the form of NaOH and Na2SiO3 Be52. In making geopolymer concrete, additional ingredients such as superplastizer are added to increase the workability of geopolymer concrete. From this research, the results of concrete compressive strength above fc' 25 MPa and horizontal slump values reached 60 to 80 centimeters.


Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 983 ◽  
Author(s):  
Dong Dao ◽  
Hai-Bang Ly ◽  
Son Trinh ◽  
Tien-Thinh Le ◽  
Binh Pham

Geopolymer concrete (GPC) has been used as a partial replacement of Portland cement concrete (PCC) in various construction applications. In this paper, two artificial intelligence approaches, namely adaptive neuro fuzzy inference (ANFIS) and artificial neural network (ANN), were used to predict the compressive strength of GPC, where coarse and fine waste steel slag were used as aggregates. The prepared mixtures contained fly ash, sodium hydroxide in solid state, sodium silicate solution, coarse and fine steel slag aggregates as well as water, in which four variables (fly ash, sodium hydroxide, sodium silicate solution, and water) were used as input parameters for modeling. A total number of 210 samples were prepared with target-specified compressive strength at standard age of 28 days of 25, 35, and 45 MPa. Such values were obtained and used as targets for the two AI prediction tools. Evaluation of the model’s performance was achieved via criteria such as mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R2). The results showed that both ANN and ANFIS models have strong potential for predicting the compressive strength of GPC but ANFIS (MAE = 1.655 MPa, RMSE = 2.265 MPa, and R2 = 0.879) is better than ANN (MAE = 1.989 MPa, RMSE = 2.423 MPa, and R2 = 0.851). Sensitivity analysis was then carried out, and it was found that reducing one input parameter could only make a small change to the prediction performance.


2019 ◽  
Vol 11 (1) ◽  
pp. 1067
Author(s):  
Hadi Winarno ◽  
Damris Muhammad ◽  
Yudha Gusti Wibowo

Fly ash and bottom ash are solid waste from coal combustion in the operating system of Steam Power Plant (PLTU). The research was conducted by combining fly ash and bottom ash with an adhesive consisting of portland cement. Based on the tests performed the maximum mixture obtained with cement samples, fly ash and bottom ash is 1: 2: 2. Paving blocks made from fly ash and bottom ash have compressive strength values resulting in compressive strength values of 50.52 MPa. This value indicates that the sample is in the class of paving blocks A. Paving Block made from fly ash and bottom ash also has a very good average air absorption value, in a combination of suitable cement mixtures, fly ash and bottom ash (1: 2: 2) the average air absorption value is still 5.06%. This value shows that the sample is in class B paving blocks.


2022 ◽  
Vol 955 (1) ◽  
pp. 012010
Author(s):  
A Kustirini ◽  
Antonius ◽  
P Setiyawan

Abstract Geopolymer concrete is concrete that uses environmentally friendly materials, using fly ash from waste materials from the coal industry as a substitute for cement. To produce geopolymer concrete, an alkaline activator is required, with a mixture of Sodium Hydroxide and Sodium Silicate. This research is an experimental study to determine the effect of variations in the concentration of sodium hydroxide (NaOH) 8 Mol, 10 Mol, 12 Mol, and 14 Mol on the compressive strength of geopolymer concrete. Mortar Geopolymer uses a mixture of 1: 3 for the ratio of fly ash and sand, 2.5: 0.45 for the ratio of sodium silicate and sodium hydroxide as an alkaline solution. The specimens used a cube mold having dimension 5 cm x 5 cm x 5 cm, then tested at 7 days and 28 days. The test resulted that concentration of NaOH 12 Mol obtained the maximum compressive strength of geopolymer concrete, that is 38.54 MPa. At concentrations of 12 Mol NaOH and exceeding 12M, the compressive strength of geopolymer concrete decreased.


2019 ◽  
Vol 296 ◽  
pp. 105-111 ◽  
Author(s):  
Quang Minh Do ◽  
Thu Ha Bui ◽  
Hoc Thang Nguyen

This paper illustrates a special investigation on geopolymer concrete synthesized from fly ash, sand, coarse aggregates (solid phases) in conditions of sodium silicate solution and seawater (liquid phases). The mixtures of geopolymer concrete were designed with proportion changes of among materials to evaluate effects of the proportions to engineering properties of products. The specimens were molded into cylinder with 200 mm in length and 100 mm in diameter, and then cured at room condition (28 °C, 80 % of humidity) for testing engineering properties for 7 days, 28 days, 90 days, and 180 days. The engineering properties of geopolymer concrete samples included compressive strength (MPa), water absorption (kg/m3), and volumetric weight (kg/m3). The results showed that the fly ash-based geopolymer concrete using sodium silicate solution and seawater was very good performance with value of 180 day-compressive strength at 58 MPa, water absorption and volumetric weight were at 180 kg/m3 and 2200 kg/m3, respectively.


2021 ◽  
Author(s):  
Hemn Unis Ahmed ◽  
Azad A. Mohammed ◽  
Ahmed S. Mohammed

Abstract The growing concern about global climate change and its adverse impacts on societies is putting severe pressure on the construction industry as one of the largest producers of greenhouse gases. Given the environmental issues associated with cement production, geopolymer concrete has emerged as a sustainable construction material. Geopolymer concrete is cementless concrete that uses industrial or agro by-product ashes as the main binder instead of ordinary Portland cement; this leads to being an eco-efficient and environmentally friendly construction material. Compressive strength is one of the most important mechanical property for all types of concrete composites including geopolymer concrete, and it is affected by several parameters like an alkaline solution to binder ratio (l/b), fly ash (FA) content, SiO2/Al2O3 (Si/Al) of the FA, fine aggregate (F) and coarse aggregate (C) content, sodium hydroxide (SH) and sodium silicate (SS) content, ratio of sodium silicate to sodium hydroxide (SS/SH), molarity (M), curing temperature (T), curing duration (CD) inside the oven and specimen ages (A). In this regard, a comprehensive systematic review was carried out to show the effect of these different parameters on the compressive strength of the fly ash-based geopolymer concrete (FA-GPC). In addition, multi-scale models such as Artificial Neural Network (ANN), M5P-tree (M5P), Linear Regression (LR), and Multi-logistic Regression (MLR) models were developed to predict the compressive strength of FA-GPC composites. For the first time, in the modeling process, twelve effective parameters including l/b, FA, Si/Al, F, C, SH, SS, SS/SH, M, T, CD, and A were considered the modeling input parameters. Then, the efficiency of the developed models was assessed by various statistical assessment tools like Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Scatter Index (SI), OBJ value, and the Coefficient of determination (R2). Results show that the curing temperature, sodium silicate content, and ratio of the alkaline solution to the binder content are the most significant independent parameters that influence on the compressive strength of the FA-GPC, and the ANN model has better performance for predicting the compressive strength of FA-GPC in compared to the other developed models.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253006
Author(s):  
Hemn Unis Ahmed ◽  
Ahmed Salih Mohammed ◽  
Azad A. Mohammed ◽  
Rabar H. Faraj

Geopolymer concrete is an inorganic concrete that uses industrial or agro by-product ashes as the main binder instead of ordinary Portland cement; this leads to the geopolymer concrete being an eco-efficient and environmentally friendly construction material. A variety of ashes used as the binder in geopolymer concrete such as fly ash, ground granulated blast furnace slag, rice husk ash, metakaolin ash, and Palm oil fuel ash, fly ash was commonly consumed to prepare geopolymer concrete composites. The most important mechanical property for all types of concrete composites, including geopolymer concrete, is the compressive strength. However, in the structural design and construction field, the compressive strength of the concrete at 28 days is essential. Therefore, achieving an authoritative model for predicting the compressive strength of geopolymer concrete is necessary regarding saving time, energy, and cost-effectiveness. It gives guidance regarding scheduling the construction process and removal of formworks. In this study, Linear (LR), Non-Linear (NLR), and Multi-logistic (MLR) regression models were used to develop the predictive models for estimating the compressive strength of fly ash-based geopolymer concrete (FA-GPC). In this regard, a comprehensive dataset consists of 510 samples were collected in several academic research studies and analyzed to develop the models. In the modeling process, for the first time, twelve effective variable parameters on the compressive strength of the FA-GPC, including SiO2/Al2O3 (Si/Al) of fly ash binder, alkaline liquid to binder ratio (l/b), fly ash (FA) content, fine aggregate (F) content, coarse aggregate (C) content, sodium hydroxide (SH)content, sodium silicate (SS) content, (SS/SH), molarity (M), curing temperature (T), curing duration inside ovens (CD) and specimen ages (A) were considered as the modeling input parameters. Various statistical assessments such as Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Scatter Index (SI), OBJ value, and the Coefficient of determination (R2) were used to evaluate the efficiency of the developed models. The results indicated that the NLR model performed better for predicting the compressive strength of FA-GPC mixtures compared to the other models. Moreover, the sensitivity analysis demonstrated that the curing temperature, alkaline liquid to binder ratio, and sodium silicate content are the most affecting parameter for estimating the compressive strength of the FA-GPC.


2021 ◽  
Vol 13 (24) ◽  
pp. 13502
Author(s):  
Hemn Unis Ahmed ◽  
Azad A. Mohammed ◽  
Serwan Rafiq ◽  
Ahmed S. Mohammed ◽  
Amir Mosavi ◽  
...  

The building industry, which emits a significant quantity of greenhouse gases, is under tremendous pressure due to global climate change and its consequences for communities. Given the environmental issues associated with cement production, geopolymer concrete has emerged as a sustainable construction material. Geopolymer concrete is an eco-friendly construction material that uses industrial or agricultural by-product ashes as the principal binder instead of Portland cement. Fly ash, ground granulated blast furnace slag, rice husk ash, metakaolin, and palm oil fuel ash were all employed as binders in geopolymer concrete, with fly ash being the most frequent. The most important engineering property for all types of concrete composites, including geopolymer concrete, is the compressive strength. It is influenced by different parameters such as the chemical composition of the binder materials, alkaline liquid to binder ratio, extra water content, superplasticizers dosages, binder content, fine and coarse aggregate content, sodium hydroxide and sodium silicate content, the ratio of sodium silicate to sodium hydroxide, the concentration of sodium hydroxide (molarity), curing temperature, curing durations inside oven, and specimen ages. In order to demonstrate the effects of these varied parameters on the compressive strength of the fly ash-based geopolymer concrete, a comprehensive dataset of 800 samples was gathered and analyzed. According to the findings, the curing temperature, sodium silicate content, and alkaline solution to binder ratio are the most significant independent parameters influencing the compressive strength of the fly ash-based geopolymer concrete (FA-BGPC) composites.


Author(s):  
Noviatul Munawaroh ◽  
Siti Syamsyiatun ◽  
Achmad Ali Fikri

Penelitian ini dilakukan bertujuan untuk mengetahui adanya proses pengolahan air dan pengendalian limbah di pembangkit listrik tenaga uap (PLTU) Desa Tubanan Kecamatan Kembang Kabupaten Jepara. Penelitian ini dilakukan dengan metode kepustakaan. PLTU yang dibangun di tepi laut menggunakan air laut sebagai sumber airnya. Proses yang dilakukan dalam pengolahan air ini, antara lain adalah: 1) Destilasi, 2) Demineraliasi, 3) Kondensasi, dan 4) Instalasi Pengolahan Air. Kemudian dalam melakukan pengendalian limbah PLTU dilakukan beberapa pengolahan limbah berdasarkan karakteristik dari setiap sumber limbah yang dihasilkan. Limbah PLTU sudah dapat dimanfaatkan untuk fly ash, buttom ash, dan gypsum. Dalam pengolahan limbah hasil prosduksi, PLTU juga bekerja sama dengan Perusda Pemkab Jepara. PLTU juga telah merencanakan program E-green (perusahaan hijau) yang aman terhadap manusia, lingkungan, efisiensi dalam pemanfaatan SDM, dan mampu berkonstribusi terhadap keanekaragaman hayati.[The research was conducted aimed at knowing the process of water management and waste control at the Steam Power Plant (PLTU) in Tubanan Village, Kembang District, Jepara Regency. This research was conducted using the library method. The PLTU built on the seashore uses sea water as a source of water. The processes carried out in this water treatment include: 1) Distillation, 2) Demineralization, 3) Condensation, and 4) Water Tretment plant. Then in conducting waste control, PLTU is carried out by several waste treatments based on the characteristics of each source of waste produced. The PLTU waste can already be used for fly ash, buttom ash, and gypsum. In processing production waste, the PLTU cooperates with the Regional Government of Jepara Regency. The PLTU has also planned an E-green (green company) program that is safe for humans, the environment, efficiency in utilizing human resources, and able to contribute to biodiversity.]


2020 ◽  
Vol 13 (1) ◽  
pp. 117-122
Author(s):  
Addepalli Mallinadh Kashyap ◽  
Tanimki Chandra Sekhar Rao ◽  
N.V. Ramana Rao

Carbon dioxide is liberated in huge amounts by the manufacturing of Portland Pozzolana Cement. Normally, conventional concrete is manufactured with Portland cement, which acts as a binder. The production of cement emits CO2 into the atmosphere, which is a green house gas and causes the environmental pollution. Considering this as a serious environmental problem, there is a need to develop sustainable alternatives to Portland cement utilizing the industrial byproducts such as fly ash, ground granulated blast furnace slag and Metakaoline which are pozzolonic in nature. It has been established that fly ash can replace cement partially. In this context, a new material was developed known as ‖Geopolymer‖. In this study, the various parameters on the short term engineering properties of fresh and hardened properties of Geopolymer Mortar were studied. In the present investigation, cement is replaced by geopolymer source material and water is replaced by alkaline activator consisting of Sodium Silicate and Sodium Hydroxide of molarity (12M). The ratio of sodium silicate to sodium hydroxide adopted was 2.5. The test results showed that final setting time decreases as the GGBS content in the mix increases and also increase in compressive strength. Where as in the case of metakaoline, as the content increases, there is a decrease in compressive strength and setting times of the geopolymer concrete.


Sign in / Sign up

Export Citation Format

Share Document