scholarly journals Rainfall interception loss by corn crop

Author(s):  
T Erlangga ◽  
A Yulianur ◽  
Sugianto ◽  
L Aditya
2016 ◽  
Vol 17 (7) ◽  
pp. 1985-1997 ◽  
Author(s):  
John T. Van Stan ◽  
Ethan D. Gutmann ◽  
Elliott S. Lewis ◽  
Trent E. Gay

Abstract Barrier island forests are sensitive to changing precipitation characteristics as they typically rely on a precipitation-fed freshwater lens. Understanding and predicting significant rainfall losses is, therefore, critical to the prediction and management of hydrometeorological processes in the barrier island forest ecosystem. This study measures and models one such loss, canopy rainfall interception, for a barrier island forest common across subtropical and tropical coastlines: epiphyte-laden Quercus virginiana on St. Catherine’s Island (Georgia, United States). Reformulated Gash analytical models (RGAMs) relying on static- and variable-canopy-storage formulations were parameterized using common maximum water storage (minimum, mean, maximum, and laboratory submersion) and evaporation (Penman–Monteith, saturated rain–throughfall regression, and rain–interception regression) estimation methods. Cumulative interception loss was 37% of rainfall, and the epiphyte community contribution to interception loss was 11%. Variable-storage RGAMs using inferred evaporation and maximum water storage estimates performed best: mean absolute error of 1–2 mm, normalized mean percent error of 15%–25%, and model efficiency of 0.88–0.97, resulting in a 2%–5% overestimate of cumulative interception. Static- and variable-storage RGAMs using physically derived evaporation (Penman–Monteith) underestimated observed interception loss (40%–60%), yet the error was significantly lowered for submersion estimates of maximum water storage. Greater apparent error when using Penman–Monteith rates may result from unknown drying times, evaporation sources, and/or in situ epiphyte storage dynamics. As such, it is suggested that future research apply existing technologies to quantify evaporative processes during rainfall (e.g., eddy covariance) and to develop new methods to directly monitor in situ epiphyte water storage.


2015 ◽  
Vol 28 (6) ◽  
pp. 291-297
Author(s):  
Ayako IWAYA ◽  
Shoji NOGUCHI ◽  
Tomonori KANEKO ◽  
Shinji SAWANO

2006 ◽  
Vol 10 (1) ◽  
pp. 65-77 ◽  
Author(s):  
G. Zhang ◽  
G. M. Zeng ◽  
Y. M. Jiang ◽  
G. H. Huang ◽  
J. B. Li ◽  
...  

Abstract. The original Gash analytical model and the sparse Gash's model were combined to simulate rainfall interception losses from the top- and sub-canopy layers in Shaoshan evergreen forest located in central-south China in 2003. The total estimated interception loss from the two canopy layers was 334.1 mm with an overestimation of 39.8 mm or 13.5% of the total measured interception (294.3 mm). The simulated interception losses of the top- and sub-canopy suggested that the simulated interception losses in the stages of ''during storms'' and ''after storms'' were in good agreement with the published ones. Both the original Gash model and the sparse model overestimated the interception losses, but the sparse model gave more accurate estimates than the original Gash model.


2018 ◽  
Vol 10 (11) ◽  
pp. 1720 ◽  
Author(s):  
Brecht Martens ◽  
Richard de Jeu ◽  
Niko Verhoest ◽  
Hanneke Schuurmans ◽  
Jonne Kleijer ◽  
...  

The evaporation of water from land into the atmosphere is a key component of the hydrological cycle. Accurate estimates of this flux are essential for proper water management and irrigation scheduling. However, continuous and qualitative information on land evaporation is currently not available at the required spatio-temporal scales for agricultural applications and regional-scale water management. Here, we apply the Global Land Evaporation Amsterdam Model (GLEAM) at 100 m spatial resolution and daily time steps to provide estimates of land evaporation over The Netherlands, Flanders, and western Germany for the period 2013–2017. By making extensive use of microwave-based geophysical observations, we are able to provide data under all weather conditions. The soil moisture estimates from GLEAM at high resolution compare well with in situ measurements of surface soil moisture, resulting in a median temporal correlation coefficient of 0.76 across 29 sites. Estimates of terrestrial evaporation are also evaluated using in situ eddy-covariance measurements from five sites, and compared to estimates from the coarse-scale GLEAM v3.2b, land evaporation from the Satellite Application Facility on Land Surface Analysis (LSA-SAF), and reference grass evaporation based on Makkink’s equation. All datasets compare similarly with in situ measurements and differences in the temporal statistics are small, with correlation coefficients against in situ data ranging from 0.65 to 0.95, depending on the site. Evaporation estimates from GLEAM-HR are typically bounded by the high values of the Makkink evaporation and the low values from LSA-SAF. While GLEAM-HR and LSA-SAF show the highest spatial detail, their geographical patterns diverge strongly due to differences in model assumptions, model parameterizations, and forcing data. The separate consideration of rainfall interception loss by tall vegetation in GLEAM-HR is a key cause of this divergence: while LSA-SAF reports maximum annual evaporation volumes in the Green Heart of The Netherlands, an area dominated by shrubs and grasses, GLEAM-HR shows its maximum in the national parks of the Veluwe and Heuvelrug, both densely-forested regions where rainfall interception loss is a dominant process. The pioneering dataset presented here is unique in that it provides observational-based estimates at high resolution under all weather conditions, and represents a viable alternative to traditional visible and infrared models to retrieve evaporation at field scales.


2000 ◽  
Vol 228 (3-4) ◽  
pp. 165-173 ◽  
Author(s):  
Li Xiaoyan ◽  
Gong Jiadong ◽  
Gao Qianzhao ◽  
Wei Xinghu

Biologia ◽  
2016 ◽  
Vol 71 (9) ◽  
Author(s):  
Martin Bartík ◽  
Martin Jančo ◽  
Katarína Střelcová ◽  
Jana Škvareninová ◽  
Jaroslav Škvarenina ◽  
...  

AbstractIn our paper we deal with the changes in the rainfall interception process of a climax spruce forest in the growing season (approximately from May to October) during its die-back. Experimental data were collected at the research plot of Červenec situated in the West Tatras at an elevation of 1,420 m a.s.l. in the years from 2013 to 2015. Net precipitation was monitored at three localities in both living and dead forests: canopy gap, dripping zone at crown periphery and central zone of a crown. Gross precipitation was recorded at an open forest area (with a diameter of 1–2 tree heights). The comparison of net precipitation in the stands revealed the highest values in the dripping zone at crown periphery of the living forest due to its increase by occult (horizontal) precipitation and transport of rainfall captured in the crown to its periphery. The values in the growing season of 2014 exceeded also gross precipitation. The total interception loss (total gross – net precipitation in % of gross precipitation) the canopy gap during the monitored period was 10.1% in the living and 18.3% in the dead stand, in the dripping zone at crown periphery it was 1.7% in the living and 20.5% in the dead stand, and in the central zone of a crown it was 70.6% in the living and 59.9% in the dead stand. Forest die-back had an effect on the distribution of precipitation under canopy. The comparison of mean interception values at three localities of the living and dead stands revealed significant differences between the stands in all cases (


Sign in / Sign up

Export Citation Format

Share Document