scholarly journals Physical properties of mesoporous scoria and pumice volcanic rocks

Author(s):  
Shoroog Wassel Alraddadi ◽  
Hasan Assaedi

Abstract In this study, the chemical composition, crystal structure, texture properties, and thermal properties of five powdered samples of scoria and pumice volcanic rock from different Harrats were investigated. It was observed that volcanic rocks show variations in chemical compositions, crystal structure, texture, and thermal properties. All samples comprised SiO2, Al2O3, CaO, and Fe2O3 as the major elements and contained both amorphous and crystalline phases. Textural parameters such as surface area and porosity were determined using various calculation models. The surface area of scoria samples was between 0.85 and 1.71 m2/g (Brunauer–Emmett–Teller and Single point model), 0.293-1.028 m2/g (Barrett–Joyner–Halenda model), and 1.02- 2.35 m2/g (Langmuir model). While for pumice, the calculated values of the surface area were 1.67 m2/g (Brunauer–Emmett–Teller and Single point model), 0.763 m2/g (Barrett–Joyner–Halenda model), and 2.24 m2/g (Langmuir model). The adsorption-desorption isotherm curves reveal that the scoria and pumice particles under study have mesoporous sizes between 7.89 and 9.81 nm, respectively. The differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) results of scoria and pumice samples illustrate a thermally stable material at high temperatures. TGA results show a weight gain by about 1.0% has been observed in the scoria samples in the region beyond 600 ℃ that may indicate a probable oxidation phenomenon with change color. While the DSC results of the red scoria and pumice did not show any recrystallization or oxidation, but only showed a small loss weight in the TGA result. The diversity in molecular composition, texture, and structure of scoria and pumice volcanic rock samples provide for promising natural stable mesopore materials that can be used in various mesopore technologies or applications such as solar cells.

2021 ◽  
pp. 2150407
Author(s):  
S. I. Ibrahimova

The crystal structure and thermal properties of the [Formula: see text] compound have been investigated. Structural studies were performed by X-ray diffraction at room temperature. The crystal structure of this compound was found to correspond to the hexagonal symmetry of the space group P61. Thermal properties were studied using a differential scanning calorimetry (DSC). It was found in the temperature range [Formula: see text] that thermal effects occur at temperatures [Formula: see text] and [Formula: see text]. The thermodynamic parameters of these effects are calculated.


Author(s):  
Christoph Krebs ◽  
Inke Jess ◽  
Christian Näther

The reaction of Co(NCS)2 with 3-(aminomethyl)pyridine as coligand leads to the formation of crystals of the title compound, [Co(NCS)2(C6H8N2)2] n , that were characterized by single-crystal X-ray analysis. In the crystal structure, the CoII cations are octahedrally coordinated by two terminal N-bonded thiocyanate anions as well as two pyridine and two amino N atoms of four symmetry-equivalent 3-(aminomethyl)pyridine coligands with all pairs of equivalent atoms in a trans position. The CoII cations are linked by the 3-(aminomethyl)pyridine coligands into layers parallel to the ac plane. These layers are further linked by intermolecular N—H...S hydrogen bonding into a three-dimensional network. The purity of the title compound was determined by X-ray powder diffraction and its thermal behavior was investigated by differential scanning calorimetry and thermogravimetry.


2020 ◽  
pp. 174751982093947
Author(s):  
Shu-han Wei ◽  
Xiao Ma ◽  
Zi-mei Ding ◽  
Kang-zhen Xu ◽  
Hong-xu Gao ◽  
...  

Ni(NH3)4(AFT)2 [NiC6H16N18O2, AFT = 4-amino-3-(5-tetrazolate)furazan] is synthesized and characterized by elemental analysis and Fourier-transform infrared spectroscopy for the first time. X-ray diffraction measurements are used to determine the crystal structure of compound 1. The results demonstrate that compound 1 crystallized in the orthorhombic crystal system. The nickel(II) ion is six-coordinated by N atoms from two AFT-ligands and four NH3 molecules. Its thermal properties are investigated by differential scanning calorimetry and thermogravimetry-derivative thermogravimetry methods, with the results demonstrating that the differential scanning calorimetry curve exhibits two endothermic and one exothermic processes. The endothermic processes are in the range of 130–510 °C with a peak temperature of 188 °C. The temperature from 230 to 400 °C is the exothermic process in which the peak temperature is 314.58 °C. In addition, Kissinger’s and Ozawa-Doyle’s methods are used for calculating the non-isothermal kinetics parameters. Moreover, the apparent activation energy ( E), safety, and thermal stability parameters ( TSADT, TTIT, Tb) for Ni(NH3)4(AFT)2 are calculated. In addition, the calculated thermodynamic functions ( ∆S≠, ∆H≠, and ∆G≠) for the exothermic decomposition process of Ni(NH3)4(AFT)2 are 55.07 J mol−1 K−1, 196.18 kJ mol−1, and 164.90 kJ mol−1, respectively.


Clay Minerals ◽  
2008 ◽  
Vol 43 (3) ◽  
pp. 415-435 ◽  
Author(s):  
P. Pialy ◽  
C. Nkoumbou ◽  
F. Villiéras ◽  
A. Razafitianamaharavo ◽  
O. Barres ◽  
...  

AbstractThe Lembo clay deposit occurs on orthogneiss, but it also comprises clays with litho-relicts of volcanic rocks. In this study, ten samples from two sites were investigated. The mineralogical compositions consisted of kaolinite + halloysite + illite + quartz + hematite + anatase ± rutile ± orthoclase ± sanidine ± magnetite ± maghemite ± goethite ± Ba-Al-Fe-phosphates ± carbonates ± sulphates. Kaolinite-halloysite and quartz are the prevailing minerals. Some volcanicderived clays contain Fe-rich kaolinite-halloysite (9.6–14.1 wt.% Fe2O3). The chemical compositions, colours and specific surface area (SSA) measurements reveal two groups of clays: one with a positive whiteness index (IB), small SSA and small Fe content, and the other showing a large SSA, negative IB and relatively large Fe contents. The compositions of the first group are close to those of clays from the Mayouom deposit (Cameroon), and from some European commercial kaolins used in ceramics. Relatively Fe-rich clay materials may conform to most formulations of earthen bricks. As a whole, the Lembo clay deposit comprises various compositions of kaolinitic clays, which may yield the opportunity for extensive application in ceramics.


Author(s):  
Gejing Li ◽  
D. R. Peacor ◽  
D. S. Coombs ◽  
Y. Kawachi

Recent advances in transmission electron microscopy (TEM) and analytical electron microscopy (AEM) have led to many new insights into the structural and chemical characteristics of very finegrained, optically homogeneous mineral aggregates in sedimentary and very low-grade metamorphic rocks. Chemical compositions obtained by electron microprobe analysis (EMPA) on such materials have been shown by TEM/AEM to result from beam overlap on contaminant phases on a scale below resolution of EMPA, which in turn can lead to errors in interpretation and determination of formation conditions. Here we present an in-depth analysis of the relation between AEM and EMPA data, which leads also to the definition of new mineral phases, and demonstrate the resolution power of AEM relative to EMPA in investigations of very fine-grained mineral aggregates in sedimentary and very low-grade metamorphic rocks.Celadonite, having end-member composition KMgFe3+Si4O10(OH)2, and with minor substitution of Fe2+ for Mg and Al for Fe3+ on octahedral sites, is a fine-grained mica widespread in volcanic rocks and volcaniclastic sediments which have undergone low-temperature alteration in the oceanic crust and in burial metamorphic sequences.


2017 ◽  
Vol 58 (7) ◽  
pp. 1492-1495
Author(s):  
S. A. Cherkasov ◽  
◽  
E. S. Vikulova ◽  
N. S. Nikolaeva ◽  
A. I. Smolentsev ◽  
...  

2020 ◽  
Vol 10 (3) ◽  
pp. 200-207
Author(s):  
Sabbir Ansari ◽  
Tasneem Fatma

Background: Poly-3-hydroxybutyrate (PHB) has attracted much consideration as biodegradable biocompatible polymer. This thermoplastic polymer has comparable material properties to polypropylene. Materials with more valuable properties may result from blending, a common practice in polymer science. Objective: In this paper, blends of PHB (extracted from cyanobacterium Nostoc muscorum NCCU- 442 with polyethylene glycol (PEG) were investigated for their thermal, tensile, hydrophilic and biodegradation properties. Methods: Blends were prepared in different proportions of PHB/PEG viz. 100/0, 98/2, 95/5, 90/10, 80/20, and 70/30 (wt %) using solvent casting technique. Morphological properties were investigated by using Scanning Electron Microscopy (SEM). Differential scanning calorimetry and thermogravimetric analysis were done for thermal properties determination whereas the mechanical and hydrophilic properties of the blends were studied by means of an automated material testing system and contact angle analyser respectively. Biodegradability potential of the blended films was tested as percent weight loss by mixed microbial culture within 60 days. Results: The blends showed good misciblity between PEG and PHB, however increasing concentrations of plasticizer caused morphological alteration as evidenced by SEM micrographs. PEG addition (10 % and above) showed significant alternations in the thermal properties of the blends. Increase in the PEG content increased the elongation at break ratio i.e enhanced the required plasticity of PHB. Rate of microbial facilitated degradation of the blends was greater with increasing PEG concentrations. Conclusion: Blending with PEG increased the crucial polymeric properties of cyanobacterial PHB.


Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2016
Author(s):  
Honghua Wang ◽  
Qilin Mei ◽  
Yujie Ding ◽  
Zhixiong Huang ◽  
Minxian Shi

Diallyl orthophthalate (DAOP) prepolymer was investigated as a reactive plasticizer to improve the processability of thermoplastics. The rheology of blends of DAOP prepolymer initiated by 2,3-dimethyl-2,3-diphenylbutane (DMDPB) and polyphenylene oxide (PPO) was monitored during the curing process, and their thermal properties and morphology in separated phases were also studied. Differential scanning calorimetry (DSC) results showed that the cure degree of the reactively plasticized DAOP prepolymer was reduced with increasing PPO due to the dilution effect. The increasing amount of the DAOP prepolymer led to a gradual decrease in the viscosity of the blends and the rheology behavior was consistent with the chemical gelation of DAOP prepolymer in blends. This indicated that the addition of the DAOP prepolymer effectively improved processability. The phase separation occurring during curing of the blend and the transition from the static to dynamic mode significantly influences the development of the morphology of the blend corresponding to limited evolution of the conversion around the gel point.


Sign in / Sign up

Export Citation Format

Share Document