scholarly journals Recent progress in laser texturing of battery materials: a review of tuning electrochemical performances, related material development, and prospects for large-scale manufacturing

2020 ◽  
Vol 3 (1) ◽  
pp. 012002
Author(s):  
Wilhelm Pfleging
2019 ◽  
Vol 19 (1) ◽  
pp. 4-16 ◽  
Author(s):  
Qihui Wu ◽  
Hanzhong Ke ◽  
Dongli Li ◽  
Qi Wang ◽  
Jiansong Fang ◽  
...  

Over the past decades, peptide as a therapeutic candidate has received increasing attention in drug discovery, especially for antimicrobial peptides (AMPs), anticancer peptides (ACPs) and antiinflammatory peptides (AIPs). It is considered that the peptides can regulate various complex diseases which are previously untouchable. In recent years, the critical problem of antimicrobial resistance drives the pharmaceutical industry to look for new therapeutic agents. Compared to organic small drugs, peptide- based therapy exhibits high specificity and minimal toxicity. Thus, peptides are widely recruited in the design and discovery of new potent drugs. Currently, large-scale screening of peptide activity with traditional approaches is costly, time-consuming and labor-intensive. Hence, in silico methods, mainly machine learning approaches, for their accuracy and effectiveness, have been introduced to predict the peptide activity. In this review, we document the recent progress in machine learning-based prediction of peptides which will be of great benefit to the discovery of potential active AMPs, ACPs and AIPs.


Nanophotonics ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Wei Shi ◽  
Ye Tian ◽  
Antoine Gervais

AbstractThe tremendous growth of data traffic has spurred a rapid evolution of optical communications for a higher data transmission capacity. Next-generation fiber-optic communication systems will require dramatically increased complexity that cannot be obtained using discrete components. In this context, silicon photonics is quickly maturing. Capable of manipulating electrons and photons on the same platform, this disruptive technology promises to cram more complexity on a single chip, leading to orders-of-magnitude reduction of integrated photonic systems in size, energy, and cost. This paper provides a system perspective and reviews recent progress in silicon photonics probing all dimensions of light to scale the capacity of fiber-optic networks toward terabits-per-second per optical interface and petabits-per-second per transmission link. Firstly, we overview fundamentals and the evolving trends of silicon photonic fabrication process. Then, we focus on recent progress in silicon coherent optical transceivers. Further scaling the system capacity requires multiplexing techniques in all the dimensions of light: wavelength, polarization, and space, for which we have seen impressive demonstrations of on-chip functionalities such as polarization diversity circuits and wavelength- and space-division multiplexers. Despite these advances, large-scale silicon photonic integrated circuits incorporating a variety of active and passive functionalities still face considerable challenges, many of which will eventually be addressed as the technology continues evolving with the entire ecosystem at a fast pace.


EcoMat ◽  
2021 ◽  
Author(s):  
Chan Ul Kim ◽  
Eui Dae Jung ◽  
Young Wook Noh ◽  
Seong Kuk Seo ◽  
Yunseong Choi ◽  
...  

2015 ◽  
Vol 17 (7) ◽  
pp. 4799-4844 ◽  
Author(s):  
Mahesh Datt Bhatt ◽  
Colm O'Dwyer

Advancements and progress in computational and theoretical investigations of Li-ion battery materials and electrolytes are reviewed and assessed.


1993 ◽  
Vol 316 ◽  
Author(s):  
H. H. Hosack

Silicon-On-Insulator (SOI) technology [1-4] has been shown to have significant performance and fabrication advantages over conventional bulk processing for a wide variety of large scale CMOS IC applications. Advantages in radiation environments has generated significant interest in this technology from military and space science communities [5,6]. Possible advantages of SOI technology for low power, low voltage and high performance circuit applications is under serious consideration by several commercial IC manufacturers [7,8].


Author(s):  
R. A. Newby ◽  
T. E. Lippert ◽  
M. A. Alvin ◽  
G. J. Bruck ◽  
Z. N. Sanjana ◽  
...  

Several advanced, coal- and biomass-based combustion turbine power generation technologies are currently under development and demonstration. A key technology component in these power generation systems is the hot gas filter. These power generation technologies must utilize highly reliable and efficient hot gas filter systems to protect the turbine and to meet environmental constraints if their full thermal efficiency and cost potential is to be realized. Siemens Westinghouse Power Corporation (SWPC) has developed a hot gas filter system to near-commercial status for large-scale power generation applications. This paper reviews recent progress made by SWPC in hot gas filter test development programs and in major demonstration programs. Two advanced hot gas filter concepts, the “Inverted Candle” and the “Sheet Filter”, having the potential for superior reliability are also described.


Membranes ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 365
Author(s):  
Yang Han ◽  
Yutong Yang ◽  
W. S. Winston Ho

CO2 capture from coal- or natural gas-derived flue gas has been widely considered as the next opportunity for the large-scale deployment of gas separation membranes. Despite the tremendous progress made in the synthesis of polymeric membranes with high CO2/N2 separation performance, only a few membrane technologies were advanced to the bench-scale study or above from a highly idealized laboratory setting. Therefore, the recent progress in polymeric membranes is reviewed in the perspectives of capture system energetics, process synthesis, membrane scale-up, modular fabrication, and field tests. These engineering considerations can provide a holistic approach to better guide membrane research and accelerate the commercialization of gas separation membranes for post-combustion carbon capture.


2019 ◽  
Vol 5 (11) ◽  
pp. eaax0651 ◽  
Author(s):  
Bin Zhu ◽  
Guoliang Liu ◽  
Guangxin Lv ◽  
Yu Mu ◽  
Yunlei Zhao ◽  
...  

Silicon demonstrates great potential as a next-generation lithium ion battery anode because of high capacity and elemental abundance. However, the issue of low initial Coulombic efficiency needs to be addressed to enable large-scale applications. There are mainly two mechanisms for this lithium loss in the first cycle: the formation of the solid electrolyte interphase and lithium trapping in the electrode. The former has been heavily investigated while the latter has been largely neglected. Here, through both theoretical calculation and experimental study, we demonstrate that by introducing Ge substitution in Si with fine compositional control, the energy barrier of lithium diffusion will be greatly reduced because of the lattice expansion. This effect of isovalent isomorphism significantly reduces the Li trapping by ~70% and improves the initial Coulombic efficiency to over 90%. We expect that various systems of battery materials can benefit from this mechanism for fine-tuning their electrochemical behaviors.


Sign in / Sign up

Export Citation Format

Share Document