scholarly journals 3D printed ultra-fast photothermal responsive shape memory hydrogel for microrobot

Author(s):  
Ziheng Zhan ◽  
Lei Chen ◽  
Huigao Duan ◽  
Yiqin Chen ◽  
Min He ◽  
...  
Keyword(s):  
Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1275 ◽  
Author(s):  
Guido Ehrmann ◽  
Andrea Ehrmann

Poly(lactic acid) is not only one of the most often used materials for 3D printing via fused deposition modeling (FDM), but also a shape-memory polymer. This means that objects printed from PLA can, to a certain extent, be deformed and regenerate their original shape automatically when they are heated to a moderate temperature of about 60–100 °C. It is important to note that pure PLA cannot restore broken bonds, so that it is necessary to find structures which can take up large forces by deformation without full breaks. Here we report on the continuation of previous tests on 3D-printed cubes with different infill patterns and degrees, now investigating the influence of the orientation of the applied pressure on the recovery properties. We find that for the applied gyroid pattern, indentation on the front parallel to the layers gives the worst recovery due to nearly full layer separation, while indentation on the front perpendicular to the layers or diagonal gives significantly better results. Pressing from the top, either diagonal or parallel to an edge, interestingly leads to a different residual strain than pressing from front, with indentation on top always firstly leading to an expansion towards the indenter after the first few quasi-static load tests. To quantitatively evaluate these results, new measures are suggested which could be adopted by other groups working on shape-memory polymers.


Author(s):  
Eva Sanchez-Rexach ◽  
Patrick T. Smith ◽  
Alvaro Gomez-Lopez ◽  
Maxence Fernandez ◽  
Aitziber L. Cortajarena ◽  
...  

2020 ◽  
Vol 90 (21-22) ◽  
pp. 2399-2410 ◽  
Author(s):  
Shahbaj Kabir ◽  
Hyelim Kim ◽  
Sunhee Lee

This study has investigated the physical properties of 3D-printable shape memory thermoplastic polyurethane (SMTPU) filament and its 3D-printed sinusoidal pattern obtained by fused deposition modeling (FDM) technology. To investigate 3D filaments, thermoplastic polyurethane (TPU) and SMTPU filament were examined by conducting infrared spectroscopy, x-ray diffraction (XRD), dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC) and a tensile test. Then, to examine the 3D-printed sinusoidal samples, a sinusoidal pattern was developed and 3D-printed. Those samples went through a three-step heating process: (a) untreated state; (b) 5 min heating at 70°C, cooling for 30 min at room temperature; and (c) a repeat of step 2. The results obtained by the three different heating processes of the 3D-printed sinusoidal samples were examined by XRD, DMTA, DSC and the tensile test to obtain the effect of heating or annealing on the structural and mechanical properties. The results show significant changes in structure, crystallinity and thermal and mechanical properties of SMTPU 3D-printed samples due to the heating steps. XRD showed the increase in crystallinity with heating. In DMTA, storage modulus, loss modulus and the tan σ peak position also changed for various heating steps. The DSC result showed that the Tg for different steps of the SMTPU 3D-printed sample remained almost the same at around 51°C. The tensile property of the TPU 3D-printed sinusoidal sample decreased in terms of both load and elongation with increased heating processes, while for the SMTPU 3D-printed sinusoidal sample, the load decreased but elongation increased about 2.5 times.


2018 ◽  
Vol 27 (5) ◽  
pp. 055005 ◽  
Author(s):  
Han Yuan ◽  
Frédéric Chapelle ◽  
Jean-Christophe Fauroux ◽  
Xavier Balandraud

Author(s):  
Edilberto Alves de Abrantes Júnior ◽  
Augusto Figueiredo ◽  
Carlos Jose de Araujo ◽  
Raimundo Duarte

2020 ◽  
Vol 14 (12) ◽  
pp. 1116-1126
Author(s):  
L. Dai ◽  
J. Song ◽  
S. Qu ◽  
R. Xiao

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 499
Author(s):  
Olaf Dudek ◽  
Wojciech Klein ◽  
Damian Gąsiorek ◽  
Mariusz Pawlak

3D printing of a composite structure with shape memory materials requires a special approach to the subject, at the stage of the design and printing process. This paper presents the design steps during the development of a 3D-printed composite structure with shape memory material. The connection points between the SMA fibers and the printer filament are developed in the MATLAB environment. Finite element method is used to simulate the shortening of the shape memory material under the influence of temperature and its effect on the printed polymer material is presented. In the MATLAB environment, evolutionary algorithms were used to determine the shape of the SMA fiber alignment. This work demonstrates the use of shape memory effect in 3D printed smart composite structures, where the component takes a predetermined shape. The structure obtained as a result of such printing changes with the heat generated by the current voltage, making it the desired fourth dimension.


2021 ◽  
Vol 8 ◽  
Author(s):  
Le Dong ◽  
Chengru Jiang ◽  
Jinqiang Wang ◽  
Dong Wang

The mechanical behaviors of lattice structures can be tuned by arranging or adjusting their geometric parameters. Once fabricated, the lattice’s mechanical behavior is generally fixed and cannot adapt to environmental change. In this paper, we developed a shape reconfigurable, highly stretchable lattice structure with tunable Poisson’s ratio. The lattice is built based on a hexagonal honeycomb structure. By replacing the straight beam with curled microstructure, the stretchability of the lattice is significantly improved. The Poisson’s ratio is adjusted using a geometric angle. The lattice is 3D printed using a shape memory polymer. Using its shape memory effect, the lattice demonstrates tunable shape reconfigurability as the ambient temperature changes. To capture its high stretchability, tunable Poisson’s ratio and shape reconfigurability, a phase evolution model for lattice structure is used. In the theoretical model, the effects of temperature on the material’s nonlinearity and geometric nonlinearity due to the lattice structure are assumed to be decoupled. The theoretical shape change agrees well with the Finite element results, while the theoretical model significantly reduces the computational cost. Numerical results show that the geometrical parameters and the ambient temperature can be manipulated to transform the lattice into target shapes with varying Poisson’s ratios. This work provides a design method for the 3D printed lattice structures and has potential applications in flexible electronics, soft robotics, and biomedicine.


Sign in / Sign up

Export Citation Format

Share Document