The Thyroid Hormone ReceptorβGene: Structure and Functions in the Brain and Sensory Systems

Thyroid ◽  
2003 ◽  
Vol 13 (11) ◽  
pp. 1057-1068 ◽  
Author(s):  
Iwan Jones ◽  
Maya Srinivas ◽  
Lily Ng ◽  
Douglas Forrest
2011 ◽  
Vol 2011 ◽  
pp. 1-16 ◽  
Author(s):  
Petra Mohácsik ◽  
Anikó Zeöld ◽  
Antonio C. Bianco ◽  
Balázs Gereben

Thyroid hormone plays a crucial role in the development and function of the nervous system. In order to bind to its nuclear receptor and regulate gene transcription thyroxine needs to be activated in the brain. This activation occurs via conversion of thyroxine to T3, which is catalyzed by the type 2 iodothyronine deiodinase (D2) in glial cells, in astrocytes, and tanycytes in the mediobasal hypothalamus. We discuss how thyroid hormone affects glial cell function followed by an overview on the fine-tuned regulation of T3 generation by D2 in different glial subtypes. Recent evidence on the direct paracrine impact of glial D2 on neuronal gene expression underlines the importance of glial-neuronal interaction in thyroid hormone regulation as a major regulatory pathway in the brain in health and disease.


Reproduction ◽  
2008 ◽  
Vol 136 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Nobuhiro Nakao ◽  
Hiroko Ono ◽  
Takashi Yoshimura

Many animals that breed seasonally measure the day length (photoperiod) and use these measurements as predictive information to prepare themselves for annual breeding. For several decades, thyroid hormones have been known to be involved in this biological process; however, their precise roles remain unknown. Recent molecular analyses have revealed that local thyroid hormone activation in the hypothalamus plays a critical role in the regulation of the neuroendocrine axis involved in seasonal reproduction in both birds and mammals. Furthermore, functional genomics analyses have revealed a novel function of the hormone thyrotropin. This hormone plays a key role in signaling day-length changes to the brain and thus triggers seasonal breeding. This review aims to summarize the currently available knowledge on the interactions between elements of the thyroid hormone axis and the neuroendocrine system involved in seasonal reproduction.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3269
Author(s):  
Maurice Ptito ◽  
Maxime Bleau ◽  
Joseph Bouskila
Keyword(s):  

In the course of evolution, animals have obtained the capacity to perceive and encode their environment via the development of sensory systems such as touch, olfaction, audition, and vision [...]


Author(s):  
A. D. (Bud) Craig

This concluding chapter addresses some of the larger issues relevant to the ideas presented in this book. These issues include the purpose of feelings, the brain structures required in order to experience feelings and which species have them, the kinds of feelings that other species might experience, why feelings seem to propel behavior, and whether Watson—the computer that won the Jeopardy game—might ever experience feelings. The chapter then examines the concept of graded sentience. This concept seems to provide the basis for graded feelings of interoceptive conditions, depending on the level of refinement of the homeostatic motor and sensory systems.


2020 ◽  
Vol 43 (1) ◽  
pp. 337-353 ◽  
Author(s):  
Melanie Maya Kaelberer ◽  
Laura E. Rupprecht ◽  
Winston W. Liu ◽  
Peter Weng ◽  
Diego V. Bohórquez

Guided by sight, scent, texture, and taste, animals ingest food. Once ingested, it is up to the gut to make sense of the food's nutritional value. Classic sensory systems rely on neuroepithelial circuits to convert stimuli into signals that guide behavior. However, sensation of the gut milieu was thought to be mediated only by the passive release of hormones until the discovery of synapses in enteroendocrine cells. These are gut sensory epithelial cells, and those that form synapses are referred to as neuropod cells. Neuropod cells provide the foundation for the gut to transduce sensory signals from the intestinal milieu to the brain through fast neurotransmission onto neurons, including those of the vagus nerve. These findings have sparked a new field of exploration in sensory neurobiology—that of gut-brain sensory transduction.


Endocrinology ◽  
2012 ◽  
Vol 153 (3) ◽  
pp. 1528-1537 ◽  
Author(s):  
Steffen Mayerl ◽  
Theo J. Visser ◽  
Veerle M. Darras ◽  
Sigrun Horn ◽  
Heike Heuer

Organic anion-transporting polypeptide 1c1 (Oatp1c1) (also known as Slco1c1 and Oatp14) belongs to the family of Oatp and has been shown to facilitate the transport of T4. In the rodent brain, Oatp1c1 is highly enriched in capillary endothelial cells and choroid plexus structures where it may mediate the entry of T4 into the central nervous system. Here, we describe the generation and first analysis of Oatp1c1-deficient mice. Oatp1c1 knockout (KO) mice were born with the expected frequency, were not growth retarded, and developed without any overt neurological abnormalities. Serum T3 and T4 concentrations as well as renal and hepatic deiodinase type 1 expression levels were indistinguishable between Oatp1c1 KO mice and control animals. Hypothalamic TRH and pituitary TSH mRNA levels were not affected, but brain T4 and T3 content was decreased in Oatp1c1-deficient animals. Moreover, increased type 2 and decreased type 3 deiodinase activities indicate a mild hypothyroid situation in the brain of Oatp1c1 KO mice. Consequently, mRNA expression levels of gene products positively regulated by T3 in the brain were down-regulated. This central nervous system-specific hypothyroidism is presumably caused by an impaired passage of T4 across the blood-brain barrier and indicates a unique function of Oatp1c1 in facilitating T4 transport despite the presence of other thyroid hormone transporters such as Mct8.


Sign in / Sign up

Export Citation Format

Share Document