Application of Perfusion Culture System Improves in Vitro and in Vivo Osteogenesis of Bone Marrow-Derived Osteoblastic Cells in Porous Ceramic Materials

2003 ◽  
Vol 9 (6) ◽  
pp. 1205-1214 ◽  
Author(s):  
Yichao Wang ◽  
Toshimasa Uemura ◽  
Jian Dong ◽  
Hiroko Kojima ◽  
Junzo Tanaka ◽  
...  
1977 ◽  
Vol 145 (6) ◽  
pp. 1612-1616 ◽  
Author(s):  
T M Dexter ◽  
M A Moore ◽  
A P Sheridan

A culture system is described in which bone marrow-derived adherent cells can support prolonged proliferation and differentiation of genetically incompatible stem cells and precursor cells. The results suggest that the reactive cells responsible in vivo for host transplantation resistance and for graft-versus-host disease are selectively lost or inhibited in such cultures, which may provide a vehicle for studying some of the cellular mechanisms involved in transplantation resistance.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5136-5136
Author(s):  
Lika Drakhlis ◽  
Christiane Walter ◽  
Maike Hinrichs ◽  
Katarina Reinhardt ◽  
Dirk Reinhardt ◽  
...  

Abstract Introduction Hematopoiesis takes place in the bone marrow niche. The niche is created by a specific interplay of different cell types and signalling molecules such as growth factors and cytokines. The self-renewal and survival of hematopoietic stem cells (HSCs) as well as their proliferation and differentiation are stimulated by these microenvironmental factors. Hematological disorders such as leukemia are associated with disruptions of the microenvironment within the bone marrow niche. To get further insights into the interplay of cells and molecules creating the niche and potential alterations due to hematological disorders, it is of importance to develop a model which mimics the niche in vitro. Thus, the aim of this study was to establish a 3D perfusion culture system for human mesenchymal stromal cells (MSCs), which constitute an important supportive cellular component of the bone marrow niche. Methods We used a modular perfusion culture system (Will W. Minuth, Regensburg, Germany). The system was already applied for culturing of a variety of different tissues, but not yet for culturing human MSCs. MSCs were cultured on porous membrane filters consisting of mixed cellulose esters (pore size: 0.45 µm). Membranes were placed into a container, which was permanently perfused with fresh culture medium. Thus, the cells were constantly provided with nutrition while the accumulation of toxic metabolic products was prevented. To establish the system, several parameters were varied in order to find out optimal conditions for the MSCs in perfusion culture. The influence of the following parameters was analyzed: the material of the membranes, the cell seeding volume, the position of the membranes in the perfusion culture container, the concentration of HEPES buffer in the medium and its flow rate. The viability of the MSCs in different culture conditions was tested by applying an MTS assay. Additionally, morphology of MSCs and the expression of exemplary selected genes important for the bone marrow niche (CXCL12 and JAG1) were analyzed. MSCs cultured under conventional cell culture conditions served as controls. Statistical analysis was performed by using the Student’s t-test (GraphPad Prism 6). Results We could show that the amount of viable MSCs cultured under ideal conditions in perfusion culture was considerably higher than in conventional cell cuture (OD450: 0.37 ± 0.03 vs. 0.2 ± 0.01, P-value < 0.01 %). A perfusion rate of 20.8 µL per minute and a HEPES concentration of 50 mM were observed to be optimal for the viability and growth of the MSCs. The cells showed no differences in gene expression levels due to the different culture conditions. Table 1: Relative quantification of CXCL12 and JAG1 mRNA levels in MSCs DeltaCTCXCL12 DeltaCTJAG1 Perfusion culture 8.402 5.967 Conventional cell culture 8.008 6.750 Additionally, the MSCs cultured on membranes formed 3D-like networks. In perfusion culture, the MSCs seemed to grow in a more orderly manner compared to conventional cell culture conditions. No differences in morphology were observed due to the different culture conditions. Discussion The 3D perfusion culture system is sufficient to increase the viability and the growth of the MSCs without changing the gene expression profile of exemplary chosen genes relevant for homing and adhesion of HSCs in the bone marrow niche. The morphology of MSCs also did not change due to the different culture conditions. Conclusion This system can be used for further experiments including co-culturing experiments with MSCs and HSCs and/ or leukemic blasts and might be an important option to mimic the hematopoietic stem cell niche in vitro. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 547-547
Author(s):  
Julia Kirshner ◽  
Kyle J. Thulien ◽  
Lorri D. Martin ◽  
Carina Debes Marun ◽  
Tony Reiman ◽  
...  

Abstract Bone marrow (BM), a site of hematopoiesis, is a multicellular tissue with a complex architecture. Multiple myeloma (MM) is an incurable plasma cell malignancy where even patients in remission succumb to an inevitable relapse. While considerable progress has been made towards understanding and treating MM, to date, there is no culture system which can recapitulate the complex interactions within the BM microenvironment. Current failure to grow the MM clone within the context of human microenvironment hampers progress into the understanding of the biology of MM and design of biologically relevant therapies. Here we present an in vitro three-dimensional (3-D) tissue culture model which recapitulates the human BM microenvironment allowing for the growth and expansion of the MM clone. Cells from the BM aspirates are grown in a fibronectin, laminin and collagen rich ECM designed to reconstruct in vitro endosteum and central marrow, mimicking the in vivo microenvironment of the BM. Proliferation and redistribution of cells within reconstructed ECM results in stratification of the culture, mimicking the in vivo condition where cells occupy individual niches. Cellular composition of the culture is maintained in accordance with the proliferation properties of the BM where osteoblasts, osteoclasts, adipocytes and stromal cells differentiate along with the full complement of the hematopoietic cells. BM cultures from normal donors are well-organized with osteoclasts and hematopoietic cells occupying distinct positions in the ECM. In contrast, reconstructed BM from MM patients is disorganized in 3-D where osteoclasts intermingle with the hematopoietic compartment. The MM malignant clone is expanded in 3-D cultures as measured by real-time quantitative PCR (rqPCR) for genomic clonotypic VDJ sequences. Malignant B and plasma cells proliferate in these cultures and FISH analysis reveals that their progeny harbor chromosomal abnormalities identical to those that mark the malignant clone prior to culture. Preclinical testing of emerging therapeutics targeted for multiple myeloma is hindered by the failure of the current models to sustain growth of the myeloma clone. In the 3-D culture, myeloma clone expands within its native environment providing an ideal preclinical model where conventional (Melphalan) and novel (Velcade) therapeutics efficiently and selectively kill their target cells. In the 3-D BM culture model, non-proliferating, label retaining cells (LRC) concentrate at a putative endosteum-marrow junction, where hematopoietic stem cells have been shown to localize in vivo, suggesting that the drug-resistant myeloma stem cells localize to the endosteal niche. In a colony-forming assay, drug-resistant LRC purified from the 3-D cultures form clonal colonies composed of malignant cells with patient specific clonotypic VDJ sequences. Recapitulation of the BM architecture in vitro is a first step towards the identification and therapeutic targeting of the elusive myeloma stem cell.


2008 ◽  
Vol 396-398 ◽  
pp. 31-34
Author(s):  
Alex Dickinson ◽  
M. Browne ◽  
Jonathan Jeffers ◽  
Andy Taylor

In recent years, the processing of porous ceramic materials for implant applications has motivated the development and optimization of new technologies. To this purpose, a globular protein based (i.e. ovalbumin) consolidation approach has been proposed. In the present study, a porous hydroxyapatite:b-tricalcium phosphate - biphasic ceramics (BCP), was processed by consolidation using the protein-action technique. The processed ceramic materials exhibited appropriate pore configuration in terms of size, morphology and distribution. The in vitro reactivity and dissolution behavior of the ceramics was evaluated in SBF and biocompatibility in an osteoblasts culture, respectively. Overall, the materials tested showed biocompatibility and suitable properties for osteoconduction. A rough surface pattern displayed by the ceramics seemed to have improved both; cell adhesion and proliferation processes. In conclusion, this study revealed that the porous matrices obtained, promoted suitable development of cell metabolism without cellular death.


2015 ◽  
Vol 212 (3) ◽  
pp. 385-399 ◽  
Author(s):  
Jaeyop Lee ◽  
Gaëlle Breton ◽  
Thiago Yukio Kikuchi Oliveira ◽  
Yu Jerry Zhou ◽  
Arafat Aljoufi ◽  
...  

In mice, two restricted dendritic cell (DC) progenitors, macrophage/dendritic progenitors (MDPs) and common dendritic progenitors (CDPs), demonstrate increasing commitment to the DC lineage, as they sequentially lose granulocyte and monocyte potential, respectively. Identifying these progenitors has enabled us to understand the role of DCs and monocytes in immunity and tolerance in mice. In humans, however, restricted monocyte and DC progenitors remain unknown. Progress in studying human DC development has been hampered by lack of an in vitro culture system that recapitulates in vivo DC hematopoiesis. Here we report a culture system that supports development of CD34+ hematopoietic stem cell progenitors into the three major human DC subsets, monocytes, granulocytes, and NK and B cells. Using this culture system, we defined the pathway for human DC development and revealed the sequential origin of human DCs from increasingly restricted progenitors: a human granulocyte-monocyte-DC progenitor (hGMDP) that develops into a human monocyte-dendritic progenitor (hMDP), which in turn develops into monocytes, and a human CDP (hCDP) that is restricted to produce the three major DC subsets. The phenotype of the DC progenitors partially overlaps with granulocyte-macrophage progenitors (GMPs). These progenitors reside in human cord blood and bone marrow but not in the blood or lymphoid tissues.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 617-617 ◽  
Author(s):  
Yuxin Feng ◽  
Ming Liu ◽  
Fukun Guo ◽  
Wei Liu ◽  
Leesa Sampson ◽  
...  

Abstract Abstract 617 Self-renewal, differentiation, and proliferation of hematopoietic stem cells (HSCs) and leukemia stem cells (LSCs) are maintained in a complex microenvironment of the adult bone marrow (BM). BM endothelial cells (ECs) have been proposed to be a key component of HSC and LSC niche. However, in contrast to the well-developed culture system of human ECs, current work of murine BM endothelial cells is hindered by a lack of mouse bone marrow endothelial cell primary culture and suitable assay methods to clearly define murine BMEC functionality in vivo and in vitro, which limits genetic and mechanistic studies by using mouse models. To establish an in vivo approach to study the EC function in adult mice, a strain of Tie2-CreER transgenic mice was generated to allow conditional and inducible manipulation of BMECs by Cre recombinase expression under the Tie2 promoter. In vivo lineage tracing was achieved in a Tie2-CreER/TD-tomato or -EGFP reporter mouse strain. Upon a four day Tamoxifen injection regimen, TD-tomato or EGFP reporter was readily visualized in bone marrow vasculature that colocalizes with CD31+ ECs as determined by immunostaining. FACS analysis of Tie2-CreER/EGFP reporter mice showed that the EGFP+ cells in the BM were exclusively in the CD45- VEGFR2+ and CD31+ cell fraction, with no EGFP+ cells being detectable in the CD45+ hematopoietic lineages or osteoblast/stroma cell fractions, suggesting that the Tie2-driven CreER expression is limited to the endothelial lineage in the adult BM. Next, we developed an in vitro method to culture and assay the mouse BMECs functionally. An in vitro selection process allowed us to establish a primary BM cell culture condition that permitted functional expansion and maintenance of mouse BMECs in long-term tissue culture, yielding homogenous CD45- cells expressing endothelial markers CD31, CD34 and VEGFR2. These cells formed capillary-like structures in 2-demensional and 3-demensional tubes/capillaries, and showed TD-tomato reporter color when derived from the Tamoxifen induced Tie2-CreER/TD-tomato mouse BM. They showed expected adhesion and migration activities and morphology of ECs. Lineage chasing assays using isolated CD45+ and CD45- BM cells from the Tie2-CreER/Td-tomato mice demonstrated that the BMECs in our culture system, bearing the Tie2-promoter driven TD-tomato color and CD31+ marker, were exclusively derived from CD45- non-hematopoietic lineage. Taken together, we have established a faithful assay method for studying murine BM EC functions in vivo and in vitro, allowing the tracking and genetic manipulation of adult BM ECs in mice and in culture. The method can be useful for delineating molecular and cellular mechanisms of BMEC regulation and EC-mediated BM niche function, and may have value in testing anti-angiogenic activities of anticancer drugs in animal models. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4295-4295
Author(s):  
Jae-Hung Shieh ◽  
Tsann-Long Su ◽  
Jason Shieh ◽  
Malcolm A.S. Moore

Abstract Abstract 4295 Pre-B cell acute lymphoblastic leukemia (pre-B ALL) is the most common leukemia in children and is treatable. However, no in vitro nor in vivo models are available to investigate their pathophysiology other than a number of established cell lines that grow in the absence of any cytokine dependence or stromal interaction. We developed a serum-free MS-5 cell (a murine bone marrow stromal cell line) co-culture system that is capable of expanding human primary pre-B ALL CD34+CD19+ cells in vitro. To define a population of pre-B ALL initiating cells, our study reveals that a sorted CD34bright population displays a slow proliferation and maintains a high % of CD34+ cells. In contrast, CD34dim cells/CD34− cells fraction shows a higher proliferation but expanded cells lost CD34 antigens. A group of alkylating molecules (BO-1055, -1090, 1099, -1393 and -1509) was evaluated for proliferation of the pre-B ALL CD34+ cells, the pre-B ALL CD34− cells, human mesenchymal stem cells (hMSC), murine MSC (MS-5 cells and Op9 cells), human bone marrow derived endothelial cells (BMEC), and human cord blood (CB) CD34+ cells, as well as for a week 5 cobblestones area forming (CAFC) assay with CB CD34+ cells. BO-1055 molecule efficiently suppressed the growth of pre-B ALL CD34+ cells (IC50 = 0.29 μM) and CD34− cells (IC50 = 0.31 μM). In contrast, IC50 of BMEC, MSC, CB CD34+ cells and CAFC are >10, >25, 8, and >5 μM, respectively. Pre-B ALL cells expressing green fluorescent protein (GFP) and luciferase (GFP-Lu-pre-B ALL) were created, and a xenograft of the GFP-Lu-pre-B ALL cells to NOD/SCID IL2R gamma null (NSG) mice was established. The in vivo effect of BO-1055 to the GFP-Lu-pre-B ALL cells in NSG mice is under investigation. Our stromal culture system supports primary pre-B ALL cells and closely recapitulates the growth of primary human pre-B ALL cells in their niche in vivo. Based on this co-culture system, we identified BO-1055 as a potential therapeutic agent with an excellent toxicity window between pre-B ALL cells and normal tissues including BMEC, MSC and hematopoietic progenitor/stem cells. The in vitro stromal co-culture system combined with the xenograft model of GFP-Lu-pre-B ALL cells provides an efficient and powerful method to screen new drugs for pre-B ALL therapy. Disclosures: No relevant conflicts of interest to declare.


2018 ◽  
Author(s):  
Stefan Sieber ◽  
Annika Winter ◽  
Johanna Wachsmuth ◽  
Rhiannon David ◽  
Maria Stecklum ◽  
...  

AbstractMultipotent hematopoietic stem and progenitor cells HSPC reside in specialized stem cell niches within the bone marrow, that provide a suitable microenvironment for lifelong maintenance of the stem cells. Meaningful in vitro models recapitulating the in vivo stem cell niche biology can be employed for both basic research as well as for applied sciences and represent a powerful tool to reduce animal tests in preclinical studies. Recently we published the generation of an in vitro bone marrow niche model, capable of long-term cultivation of HSC based on an organ-on-a-chip platform. This study provides a detailed analysis of the 3D culture system including matrix environment analysis by SEM, transcriptome analysis and system intrinsic differentiation induction. Furthermore, the bone marrow on a chip model can serve to multiply and harvest HSPC, since repeated cell removal not compromised the functionality of the culture system. The prolongation of the culture time to 8 weeks demonstrate the capacity to apply the model in repeated drug testing experiments. The quality of the presented system is emphasized by the differentiation capacity of long-term cultivated HSPC in vitro and in vivo. Transplanted human HSPC migrated actively into the bone marrow of irradiated mice and contributed to the long-term reconstitution of the hematopoietic system after four and eight weeks of in vitro cultivation.The introduced system offers a multitude of possible applications to address a broad spectrum of questions regarding HSPC, the corresponding bone marrow niche biology, and pathological aberrations.


1993 ◽  
Vol 3 (3) ◽  
pp. 181-195 ◽  
Author(s):  
Sean D. Mckenna ◽  
Irving Goldschneider

The selectivein vitrogeneration of rat, mouse, and human terminal deoxynucleotidyl transferase-positive (TdT+lymphoid cells in our long-term xenogeneic bone marrow (BM) culture system is characterized by physical interaction between the developing lymphocytes and mouse BM-adherent stromal cells and macrophages. In the present study, experiments in which micropor)us membrane culture inserts were inoculated with rat BM cells demonstrated that although the generation of primitive B-lineage lymphoid cells requires the presence of a mouse BM feeder layer, cognitive recognition events are not necessary. Similarly, cell-free (and serum-free) medium conditioned with mouse BM (but not thymus or spleen) adherent cells and stromal-cell lines therefrom supported the proliferation of early rat lymphoid cells in a dose-dependent manner. Double immunofluorescence for incorporated bromo-deoxyuridine (BrdU) and early B-lineage markers of rat BM lymphoid cells maintained in culture inserts or conditioned medium (CM), and studies of their in vitro andin vivodevelopmental potentials, indicated that the lymphoproliferative response resulted from the selective stimulation of lymphoid stem and/or progenitor cells. The most primitive of these target cells had a HIS24+HIS50-TdT-cμ-sIg-, pre-pro-B-cell phenotype. Whereas this subset normally constitutes less than 2% of B-lineage BM cellsin vivo, it comprises more than 25% of total lymphoid cellsin vitro. In addition, the number of TdT+cells, predominantly of the early pro-B-cell phenotype (HIS24+HIS50-TdT-cμ-sIg-), was increased approximately tenfold above input levels. Based on these and previous findings, a schematic model is proposed for the developmental pathway of early B-lineage cells in rat BM from the level of the committed (possibly common) lymphoid stem cell to that of the pre-B-cell.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 722-722
Author(s):  
Julianne N Smith ◽  
Jonathan M Weber ◽  
Laura M Calvi

Abstract Abstract 722 In their niches within the bone marrow (BM) microenvironment, hematopoietic stem cells (HSCs) interact with a number of other cellular and molecular factors that can affect their regulation. We previously demonstrated that activation of osteoblasts (OBs) by intermittent Parathyroid Hormone (PTH) stimulation or by expression of a constitutively active PTH receptor (Col1caPTH1R mice, hereafter referred to as TG) expands HSCs with long term repopulating ability. PTH treatment has also been found to improve survival after BM injuries that severely disrupt the hematopoietic system as well as the BM vasculature; however the mechanism for this effect is unknown. Osteoblastic cells respond directly to PTH administration, whereas HSCs lack expression of the PTH1R, indicating that PTH-mediated HSC expansion occurs through the BM microenvironment. Both endosteal osteoblastic cells and the vasculature constitute HSC niches within the BM. Intermittent PTH exerts an anabolic effect on bone, expanding trabecular bone and bone-lining stromal cells. New vessel formation is required for adult bone remodeling. To test if PTH also increases the BM vasculature, we treated mice with an intensive regimen of systemic PTH that expanded hematopoietic stem and progenitor cells (HSPCs) and analyzed hindlimb histology as well as BM cell immunophenotype. In the tibial and femoral metaphyseal region, PTH increased microvessels (167 ± 18.1 vs 348 ± 39.3 microvessels/hindlimb, n=5 mice per group, p=0.0030) and vascular area ((mm2): 0.135 ± 0.0194 vs 0.281 ± 0.00951, n=5 mice per group, p=0.0001) measured by histomorphometry. PTH also increased the frequency of PECAM+ BM endothelial cells (0.0935 ± 0.0173 vs 0.196 ± 0.0172, n=4–5 mice per group, p=0.0043) measured flow cytometrically. To determine if PTH increases osteoblast-derived angiogenic signals, mouse calvarial MC3T3 cells were treated with PTH(1-34) at various stages of osteoblastic maturation. Differentiation of MC3T3 cells did not affect baseline Vegfa expression. PTH strongly induced total Vegfa expression in day 7 cells at two hours, an effect that peaked at six hours (3.83 ± 1.76 vs 50.7 ± 9.72 fold change above baseline, n=3, p=0.0090) and was sustained 24 hours after treatment. The magnitude of the effect increased throughout osteoblastic differentiation. In vitro PTH also increased levels of secreted VEGF-A protein at corresponding time points (VEGF-A(pg/mL): 43.4 ± 2.27 vs 464 ± 24.2, n=3, p<0.0001). Similarly, PTH induced Vegfa expression two hours post-stimulation in a second osteoblastic cell line, derived from rat osteosarcoma (1.133 ± 0.2963 vs 8.500 ± 1.320 fold change above baseline, n=3, p=0.0055). Vegfa pre-mRNA comprises eight exons that undergo alternative splicing to form variants encoding several VEGF-A isoforms. These isoforms differ functionally primarily due to their varying heparan-binding affinity. Specifically, VEGF189 remains mostly cell and matrix-associated due to its interactions with heparan sulfate proteoglycans in extracellular matrix and on cell surfaces. Because PTH stimulation dramatically increases extracellular matrix and bone volume, expression of the splice variant encoding matrix-associated VEGF189 was assayed in PTH-stimulated MC3T3 cells. PTH strongly increased expression of the VEGF189-encoding variant six hours after treatment of maturing MC3T3 cells (1.70 ± 1.100 vs 113 ± 25.1, n=3, p=0.0416), suggesting that PTH may favor expression of a more highly localized VEGF-A isoform. Analysis of BM plasma revealed that soluble VEGF-A levels were significantly decreased both in TG mice (VEGF-A(pg/mL): 74.2 ± 7.05 vs 44.0 ± 3.67, n=3-5 mice per group, p=0.0054) and in mice treated systemically with PTH (VEGF-A(pg/mL): 105 ± 6.62 vs 78.6 ± 4.95, n=9 mice per group, two independent experiments, p=0.0054), while serum VEGF-A levels were unchanged. Since PTH strongly stimulates osteoblastic expression of matrix-bound VEGF-A but less soluble VEGF-A is detected in the BM during PTH stimulation in vivo, we speculated that PTH-dependent proangiogenic signals in the BM microenvironment may be highly localized via modulation of Vegfa pre-mRNA splicing in osteoblastic cells. Because the blood perfusion status of BM niches profoundly affects HSPC behavior, these findings may suggest a mechanism by which PTH establishes highly localized niches to instruct the fate of resident HSCs. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document